A nonlinear theory for shells with slowly varying thickness

被引:16
作者
Lewicka, Marta [1 ]
Mora, Maria Giovanna [2 ]
Pakzad, Mohammad Reza [3 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
3-DIMENSIONAL ELASTICITY; GAMMA-CONVERGENCE; DERIVATION; MODEL;
D O I
10.1016/j.crma.2008.12.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Gamma-limit of 3d nonlinear elasticity for shells of small, variable thickness, around an arbitrary smooth 2d surface. To cite this article: M. Lewicka et al., C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [31] An asymptotically exact theory of smart sandwich shells
    Le, Khanh Chau
    Yi, Jeong-Hun
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 106 : 179 - 198
  • [32] ON SOLUTIONS OF VLASOV-POISSON-LANDAU EQUATIONS FOR SLOWLY VARYING IN SPACE INITIAL DATA
    Bobylev, Alexander
    Potapenko, Irina
    KINETIC AND RELATED MODELS, 2022, : 20 - 40
  • [33] The Hellan-Herrmann-Johnson method for nonlinear shells
    Neunteufel, Michael
    Schoeberl, Joachim
    COMPUTERS & STRUCTURES, 2019, 225
  • [34] Optimal Design of CNT-Nanocomposite Nonlinear Shells
    Leonetti, Leonardo
    Garcea, Giovanni
    Magisano, Domenico
    Liguori, Francesco
    Formica, Giovanni
    Lacarbonara, Walter
    NANOMATERIALS, 2020, 10 (12) : 1 - 24
  • [35] Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory
    Ansari, R.
    Hasrati, E.
    Shakouri, A. H.
    Bazdid-Vahdati, M.
    Rouhi, H.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 106 : 130 - 143
  • [36] Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory
    Chroscielewski, J.
    Sabik, A.
    Sobczyk, B.
    Witkowski, W.
    THIN-WALLED STRUCTURES, 2016, 105 : 207 - 219
  • [37] Fate of topological states and mobility edges in one-dimensional slowly varying incommensurate potentials
    Liu, Tong
    Yan, Hai-Yang
    Guo, Hao
    PHYSICAL REVIEW B, 2017, 96 (17)
  • [38] The passive properties of dendrites modulate the propagation of slowly-varying firing rate in feedforward networks
    Gao, Tianshi
    Deng, Bin
    Wang, Jixuan
    Wang, Jiang
    Yi, Guosheng
    NEURAL NETWORKS, 2022, 150 : 377 - 391
  • [39] Time-Frequency Detection of Slowly Varying Periodic Signals with Harmonics: Methods and Performance Evaluation
    O'Toole, John M.
    Boashash, Boualem
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [40] Exact Mobility Edges in 1D Mosaic Lattices Inlaid with Slowly Varying Potentials
    Gong, Long-Yan
    Lu, Hui
    Cheng, Wei-Wen
    ADVANCED THEORY AND SIMULATIONS, 2021, 4 (11)