Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued AR(p) models

被引:61
作者
Drost, Feike C. [1 ]
van den Akker, Ramon [1 ]
Werker, Bas J. M. [1 ]
机构
[1] Tilburg Univ, Econometr & Finance Grp, NL-5000 LE Tilburg, Netherlands
关键词
Count data; Infinite dimensional Z-estimator; Non-parametric maximum likelihood; Semiparametric efficiency; ADAPTIVE ESTIMATION; ENTRY; QUEUE;
D O I
10.1111/j.1467-9868.2008.00687.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integer-valued auto-regressive (INAR) processes have been introduced to model non-negative integer-valued phenomena that evolve over time. The distribution of an INAR(p) process is essentially described by two parameters: a vector of auto-regression coefficients and a probability distribution on the non-negative integers, called an immigration or innovation distribution. Traditionally, parametric models are considered where the innovation distribution is assumed to belong to a parametric family. The paper instead considers a more realistic semiparametric INAR(p) model where there are essentially no restrictions on the innovation distribution. We provide an (semiparametrically) efficient estimator of both the auto-regression parameters and the innovation distribution.
引用
收藏
页码:467 / 485
页数:19
相关论文
共 40 条