Nonlinear Schrodinger equation in the Bopp-Podolsky electrodynamics: Solutions in the electrostatic case

被引:55
作者
D'Avenia, Pietro [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Elliptic systems; Schrodinger-Bopp-Podolsky equations; Variational Methods; Standing waves solutions; STANDING WAVES; SOLITARY WAVES; EXISTENCE; FOUNDATIONS; STABILITY;
D O I
10.1016/j.jde.2019.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following nonlinear Schrodinger-Bopp-Podolsky system {-Delta u + omega u + q(2) phi u = vertical bar u vertical bar(p-2)u in R-3 -Delta phi + a(2)Delta(2)phi = 4 pi u(2) with a, omega > 0. We prove existence and nonexistence results depending on the parameters q, p. Moreover we also show that, in the radial case, the solutions we find tend to solutions of the classical Schrodinger Poisson system as a -> 0. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1025 / 1065
页数:41
相关论文
共 38 条
  • [1] Adams R. A., 1975, SOBOLEV SPACES
  • [2] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [3] [Anonymous], 1912, Ann. Phys, V37, P511
  • [4] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791
  • [5] On the Schrodinger-Born-Infeld System
    Azzollini, Antonio
    Pomponio, Alessio
    Siciliano, Gaetano
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (01): : 275 - 289
  • [6] Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations
    Benci, V
    Fortunato, D
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) : 409 - 420
  • [7] Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
  • [8] Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane
    Bertin, M. C.
    Pimentel, B. M.
    Valcarcel, C. E.
    Zambrano, G. E. R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [9] ORBITALLY STABLE STANDING WAVES OF A MIXED DISPERSION NONLINEAR SCHRODINGER EQUATION
    Bonheure, Denis
    Casteras, Jean-Baptiste
    dos Santos, Ederson Moreira
    Nascimento, Robson
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5027 - 5071
  • [10] On the Electrostatic Born-Infeld Equation with Extended Charges
    Bonheure, Denis
    d'Avenia, Pietro
    Pomponio, Alessio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) : 877 - 906