Image retrieval based on multi-feature fusion

被引:4
|
作者
Dong Wenfei [1 ]
Yu Shuchun [1 ]
Liu Songyu [1 ]
Zhang Zhiqiang [1 ]
Gu Wenbo [1 ]
机构
[1] Harbin Univ Sci & Technol, Higher Educ Key Lab Measuring & Control Technol &, Harbin 150080, Peoples R China
关键词
color features; texture features; shape features; multi-feature fusion weights;
D O I
10.1109/IMCCC.2014.57
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In content-based image retrieval, and for this critical issue of image feature fusion, paper proposes a new method to determine the weights for multi-feature fusion. In this paper, color histogram, color correlogram, gray level co-occurrence matrix, Tamura and Hu moments, this five kinds of feature extraction method was adopted. Firstly, use these five features conducted single feature retrieval on the various types of images to determine the precision rate of each feature retrieval and compare their precision rate. Through precision rate to determine the dynamic weight of various features when conducting the feature fusion retrieval in different categories images. The experimental results showed that: according the precision rate of each feature to dynamically regulate the weights, when carrying multi-feature fusion retrieval for different types of image, compared to multi-feature retrieval with fixed weights, precision rate of retrieval has improved significantly.
引用
收藏
页码:240 / 243
页数:4
相关论文
共 50 条
  • [21] A Bayesian Network approach to multi-feature based image retrieval
    Zhang, Qianni
    Izquierdo, Ebroul
    SEMANTIC MULTIMEDIA, PROCEEDINGS, 2006, 4306 : 138 - +
  • [22] High-precision privacy-protected image retrieval based on multi-feature fusion
    Tian, Miao
    Su, Moting
    Xiao, Xiangli
    Yi, Shuang
    Hua, Zhongyun
    Zhang, Yushu
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [23] Multi-Feature Fusion with SVM Classification for Crime Scene Investigation Image Retrieval
    Liu, Ying
    Wang, Fuping
    Hu, Dan
    Fan, Jiulun
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2017, : 160 - 165
  • [24] Weighted Multi-feature Fusion Algorithm for Fine-Grained Image Retrieval
    Wang, Zhihui
    Wang, Shijie
    Wang, Hong
    Li, Haojie
    Li, Chengming
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 630 - 640
  • [25] Remote sensing image fusion algorithm based on multi-feature
    Wang, Feng
    Cheng, Yongmei
    Li, Song
    Mu, Honglei
    Li, Ludong
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2015, 33 (03): : 489 - 494
  • [26] Human behavior recognition based on multi-feature fusion of image
    Xu Song
    Hongyu Zhou
    Guoying Liu
    Cluster Computing, 2019, 22 : 9113 - 9121
  • [27] Human behavior recognition based on multi-feature fusion of image
    Song, Xu
    Zhou, Hongyu
    Liu, Guoying
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9113 - S9121
  • [28] An Image Edge Detection Algorithm Based on Multi-Feature Fusion
    Wang, Zhenzhou
    Li, Kangyang
    Wang, Xiang
    Lee, Antonio
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 4995 - 5009
  • [29] Infrared image segmentation algorithm based on fusion of multi-feature
    Kun, Qiao
    Chaoyong, Guo
    Jinwei, Shi
    Lecture Notes in Electrical Engineering, 2011, 98 : 629 - 634
  • [30] A GLASS IMAGE CLASSIFICATION METHOD BASED ON MULTI-FEATURE FUSION
    Zhang, Liang
    Wen, Jing
    Xu, Sheng-Zhou
    Xing, Hao-Yang
    Zhu, Yu
    Chen, Heng-Xin
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 7 - 11