Modified function projective synchronization of chaotic system

被引:106
作者
Du, Hongyue [1 ,2 ]
Zeng, Qingshuang [2 ]
Wang, Changhong [2 ]
机构
[1] Harbin Univ Sci & Technol, Sch Automat, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
关键词
UNCERTAIN PARAMETERS; OSCILLATORS; CONTROLLER; PHASE;
D O I
10.1016/j.chaos.2009.03.120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new type synchronization called modified function projective synchronization, where the drive and response systems could be synchronized up to a desired scale function matrix. It is obvious that the unpredictability of the scaling functions can additionally enhance the security of communication. By active control scheme, we take Lorenz system as an example to illustrate above synchronization phenomenon. Furthermore, based on modified function projective synchronization, a scheme for secure communication is investigated in theory. The corresponding numerical simulations are performed to verify and illustrate the analytical results. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2399 / 2404
页数:6
相关论文
共 22 条
[11]   Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters [J].
Park, Ju H. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (04) :1154-1159
[12]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[13]   Phase synchronization of chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1804-1807
[14]   From phase to lag synchronization in coupled chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4193-4196
[15]   GENERALIZED SYNCHRONIZATION OF CHAOS IN DIRECTIONALLY COUPLED CHAOTIC SYSTEMS [J].
RULKOV, NF ;
SUSHCHIK, MM ;
TSIMRING, LS ;
ABARBANEL, HDI .
PHYSICAL REVIEW E, 1995, 51 (02) :980-994
[16]  
TANG X, 2007, CHINA J DYN CONTROL, V5, P216
[17]   Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems [J].
Wen, GL ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :71-77
[18]   Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension [J].
Xu, DL ;
Chee, CY .
PHYSICAL REVIEW E, 2002, 66 (04) :5-046218
[19]   Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension [J].
Xu, DL ;
Ong, WL ;
Li, ZG .
PHYSICS LETTERS A, 2002, 305 (3-4) :167-172
[20]   Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems [J].
Xu, DL ;
Li, ZG ;
Bishop, SR .
CHAOS, 2001, 11 (03) :439-442