Infinitely many solutions to a class of quasilinear Schrodinger system in RN

被引:7
作者
Chen, Caisheng [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
关键词
Quasi linear Schrodinger system; Mountain pass lemma; (PS) condition; GROUND-STATES;
D O I
10.1016/j.aml.2015.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the existence of multiple solutions to the quasilinear Schrodinger system of k equations -Delta(p)u(j) + a(j)(x)vertical bar u(j)vertical bar(p-2)u(j) = mu(j)vertical bar u(j)vertical bar(q-2)u(j) +1/2 Sigma(i not equal j) beta(ij)vertical bar u(j)vertical bar(m)vertical bar u(j)vertical bar(m-2)u(j), x is an element of R-N, with u(j)(x) -> 0 as vertical bar x vertical bar -> infinity, j = 1,2, ..., k, and N >= 2, 1 < p < N,k >= 2, the potential a(j)(x) is positive and bounded in R-N, mu(j) > 0, beta(ij), = beta(ji) for i not equal j,j =1, ..., k. We develop a new technique to verify the (PS) condition and then apply a version of mountain pass lemma to prove the existence of infinitely many nonnegative solutions to the above system. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 11 条
  • [1] [Anonymous], 2000, Variational methods
  • [2] Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
  • [3] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [4] Chang JY, 2010, P AM MATH SOC, V138, P687
  • [5] Positive solutions to some systems of coupled nonlinear Schrodinger equations
    Colorado, Eduardo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 : 104 - 112
  • [6] Hartree-Fock theory for double condensates
    Esry, BD
    Greene, CH
    Burke, JP
    Bohn, JL
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (19) : 3594 - 3597
  • [7] Evans L.C., 1998, PARTIAL DIFFERENTIAL, V19
  • [8] Ground state solutions for quasilinear Schrodinger systems
    Guo, Yuxia
    Tang, Zhongwei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 322 - 339
  • [9] Multiple mixed states of nodal solutions for nonlinear Schrodinger systems
    Liu, Jiaquan
    Liu, Xiangqing
    Wang, Zhi-qiang
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 565 - 586
  • [10] On the multiple existence of semi-positive solutions for a nonlinear Schrodinger system
    Sato, Yohei
    Wang, Zhi-Qiang
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01): : 1 - 22