Equivariant Poisson cohomology and a spectral sequence associated with a moment map

被引:18
作者
Ginzburg, VL [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
10.1142/S0129167X99000422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a new spectral sequence associated with a Poisson group action on a Poisson manifold and an equivariant momentum mapping. This spectral sequence is a Poisson analog of the Leray spectral sequence of a fibration. The spectral sequence converges to the Poisson cohomology of the manifold and has the E-2-term equal to the tensor product of the cohomology of the Lie algebra and the equivariant Poisson cohomology of the manifold. The latter is defined as the equivariant cohomology of the multi-vector fields made into a G-differential complex by means of the momentum mapping. An extensive introduction to equivariant cohomology of G-differential complexes is given including some new results and a number of examples and applications are considered.
引用
收藏
页码:977 / 1010
页数:34
相关论文
共 23 条
[1]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[2]   CALCULUS ON POISSON MANIFOLDS [J].
BHASKARA, KH ;
VISWANATH, K .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :68-72
[3]  
BOREL A, 1980, AN MATH STUDIES, V94
[4]  
Cartan H., 1950, C TOPOLOGIE, P15
[5]  
CARTAN H., 1950, C TOPOLOGIE, P57
[6]  
DUFLO M, 1993, ASTERISQUE, V205
[7]  
Fuks D. B., 1986, Cohomology of Infinite-Dimensional Lie Algebras
[8]  
Ginzburg V. L., 1992, J. Amer. Math. Soc., V5, P445, DOI 10.2307/2152773
[9]   Momentum mappings and Poisson cohomology [J].
Ginzburg, VL .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (03) :329-358
[10]   SOME REMARKS ON SYMPLECTIC ACTIONS OF COMPACT-GROUPS [J].
GINZBURG, VL .
MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (04) :625-640