Study of dielectric properties of styrene-acrylonitrile graphite sheets composites in low and high frequency region

被引:87
作者
Panwar, Varij [1 ]
Kang, Bongsik [1 ]
Park, Jong-Oh [1 ]
Park, Sukho [1 ]
Mehra, R. M. [2 ]
机构
[1] Chonnam Natl Univ, Sch Mech Syst Engn, Kwangju 500757, South Korea
[2] Univ Delhi, Dept Elect Sci, New Delhi 110021, India
关键词
Conducting polymer; Styrene-acrylonitrile; Graphite-sheet; Dielectric property; EMI shielding; INTERFERENCE SHIELDING EFFECTIVENESS; METAL-POLYMER COMPOSITE; CONDUCTION MECHANISMS; ELECTRICAL-PROPERTIES; EMBEDDED CAPACITOR; BEHAVIOR; PERCOLATION; CONSTANT; TEMPERATURE; NANOCOMPOSITES;
D O I
10.1016/j.eurpolymj.2009.02.020
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Conducting polymer composites should have a high dielectric constant and a high dissipation factor in the low and high frequency regions if they are to be used in charge storing devices, decoupling capacitors and electromagnetic interference shielding applications. Currently, extensive research is being carried out to enhance the dielectric constants of graphite-polymer, ceramic powder-polymer, metal powder-polymer and nanotube-polymer composites in the low frequency region. In this paper, we present the dielectric properties of styrene-acrylonitrile (SAN)-graphite sheets (GS) composites in the low and high frequency ranges. SAN-GS composites were prepared by the mixing process and by the hot compression mold technique. The composites showed a high dielectric constant and a high dissipation factor in the low and radio frequency region. Furthermore, the EMI shielding properties of these composites are evaluated in the radio frequency range. The conductivity and the dielectric constant of the SAN/GS composites increased with the addition of GS composites, and followed the power law model of percolation theory. The dielectric constant and the dissipation factor of the composites were analyzed according to the low and high frequency region. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1777 / 1784
页数:8
相关论文
共 43 条
[1]  
[Anonymous], INTRO PERCOLATION TH
[2]   Low energy pure shear milling: A method for the preparation of graphite nano-sheets [J].
Antisari, M. Vittori ;
Montone, A. ;
Jovic, N. ;
Piscopiello, E. ;
Alvani, C. ;
Pilloni, L. .
SCRIPTA MATERIALIA, 2006, 55 (11) :1047-1050
[4]   A metal-polymer composite with unusual properties [J].
Bloor, D ;
Donnelly, K ;
Hands, PJ ;
Laughlin, P ;
Lussey, D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (16) :2851-2860
[5]   Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications [J].
Calame, J. P. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
[6]   Conduction mechanisms in some graphite-polymer composites: Effects of temperature and hydrostatic pressure [J].
Celzard, A ;
McRae, E ;
Mareche, JF ;
Furdin, G ;
Sundqvist, B .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (03) :1410-1419
[7]   Conduction mechanisms in some graphite-polymer composites: The effect of a direct-current electric field [J].
Celzard, A ;
McRae, E ;
Furdin, G ;
Mareche, JF .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (10) :2225-2237
[8]   PMMA/graphite nanosheets composite and its conducting properties [J].
Chen, GH ;
Weng, WG ;
Wu, DJ ;
Wu, CL .
EUROPEAN POLYMER JOURNAL, 2003, 39 (12) :2329-2335
[9]   Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization [J].
Chen, GH ;
Wu, DJ ;
Weng, WG ;
He, B ;
Yan, WI .
POLYMER INTERNATIONAL, 2001, 50 (09) :980-985
[10]   Percolative conductor/polymer composite films with significant dielectric properties [J].
Chen, Qian ;
Du, Piyi ;
Jin, Lu ;
Weng, Wenjian ;
Han, Gaorong .
APPLIED PHYSICS LETTERS, 2007, 91 (02)