Remembrance of circuits past: Macromodeling by data mining in large analog design spaces

被引:71
作者
Liu, HZ [1 ]
Singhee, A [1 ]
Rutenbar, RA [1 ]
Carley, LR [1 ]
机构
[1] Carnegie Mellon Univ, Dept ECE, Pittsburgh, PA 15213 USA
来源
39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002 | 2002年
关键词
D O I
10.1109/DAC.2002.1012665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The introduction of simulation-based analog synthesis tools creates a new challenge for analog modeling. These tools routinely visit 10(3) to 10(5) fully simulated circuit solution candidates. What might we do, with all this circuit data? We show how to adapt recent ideas from large-scale data mining to build models that capture significant regions of this visited performance space, parameterized by variables manipulated by synthesis, trained by the data points visited during synthesis. Experimental results show that we can automatically build useful nonlinear regression models for large analog design spaces.
引用
收藏
页码:437 / 442
页数:4
相关论文
共 29 条
[21]   A NEW METHODOLOGY FOR THE DESIGN CENTERING OF IC FABRICATION PROCESSES [J].
LOW, KK ;
DIRECTOR, SW .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1991, 10 (07) :895-903
[22]  
Moore A.W., 1997, Proc. 14th Int. Conf. Machine Learning, P236
[23]   PRIMA: Passive reduced-order interconnect macromodeling algorithm [J].
Odabasioglu, A ;
Celik, M ;
Pileggi, LT .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1998, 17 (08) :645-654
[24]  
PHELPS R, 2000, P ACM IEEE DAC JUN
[25]  
PHELPS R, 2000, IEEE T CAD, V19
[26]  
PHILLIPS J, 2000, P IEEE CICC MAY
[27]  
PHILLIPS J, 2000, P ACM IEEE DAC JUN
[28]  
Ripley B. D., 1996, Pattern Recognition and Neural Networks
[29]  
SCHWENKER R, 1999, P DATE99 MAR