Distinguishing Non-Small Cell Lung Cancer Subtypes in Fine Needle Aspiration Biopsies by Desorption Electrospray Ionization Mass Spectrometry Imaging

被引:27
作者
Bensussan, Alena, V [1 ]
Lin, John [1 ]
Guo, Chunxiao [2 ]
Katz, Ruth [3 ]
Krishnamurthy, Savitri [3 ]
Cressman, Erik [2 ]
Eberlin, Livia S. [1 ]
机构
[1] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Intervent Radiol, Div Diagnost Imaging, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Div Pathol & Lab Med, Houston, TX 77030 USA
关键词
RAMAN-SPECTROSCOPY; DIAGNOSIS; CLASSIFICATION; CHALLENGES;
D O I
10.1093/clinchem/hvaa207
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
BACKGROUND: Distinguishing adenocarcinoma and squamous cell carcinoma subtypes of non-small cell lung cancers is critical to patient care. Preoperative minimally-invasive biopsy techniques, such as fine needle aspiration (FNA), are increasingly used for lung cancer diagnosis and subtyping. Yet, histologic distinction of lung cancer subtypes in FNA material can be challenging. Here, we evaluated the usefulness of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to diagnose and differentiate lung cancer subtypes in tissues and FNA samples. METHODS: DESI-MSI was used to analyze 22 normal, 26 adenocarcinoma, and 25 squamous cell carcinoma lung tissues. Mass spectra obtained from the tissue sections were used to generate and validate statistical classifiers for lung cancer diagnosis and subtyping. Classifiers were then tested on DESI-MSI data collected from 16 clinical FNA samples prospectively collected from 8 patients undergoing interventional radiology guided FNA. RESULTS: Various metabolites and lipid species were detected in the mass spectra obtained from lung tissues. The classifiers generated from tissue sections yielded 100% accuracy, 100% sensitivity, and 100% specificity for lung cancer diagnosis, and 73.5% accuracy for lung cancer subtyping for the training set of tissues, perpatient. On the validation set of tissues, 100% accuracy for lung cancer diagnosis and 94.1% accuracy for lung cancer subtyping were achieved. When tested on the FNA samples, 100% diagnostic accuracy and 87.5% accuracy on subtyping were achieved per-slide. Conclusions: DESI-MSI can be useful as an ancillary technique to conventional cytopathology for diagnosis and subtyping of non-small cell lung cancers.
引用
收藏
页码:1424 / 1433
页数:10
相关论文
共 34 条
[1]   Machine Learning and the Cancer-Diagnosis Problem - No Gold Standard [J].
Adamson, Adewole S. ;
Welch, H. Gilbert .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (24) :2285-2287
[2]   Selective profiling of proteins in lung cancer cells from fine-needle aspirates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry [J].
Amann, Joseph M. ;
Chaurand, Pierre ;
Gonzalez, Adriana ;
Mobley, James A. ;
Massion, Pierre P. ;
Carbone, David P. ;
Caprioli, Richard M. .
CLINICAL CANCER RESEARCH, 2006, 12 (17) :5142-5150
[3]   Rapid MALDI mass spectrometry imaging for surgical pathology [J].
Basu, Sankha S. ;
Regan, Michael S. ;
Randall, Elizabeth C. ;
Abdelmoula, Walid M. ;
Clark, Amanda R. ;
Lopez, Begona Gimenez-Cassina ;
Cornett, Dale S. ;
Haase, Andreas ;
Santagata, Sandro ;
Agar, Nathalie Y. R. .
NPJ PRECISION ONCOLOGY, 2019, 3 (1)
[4]   Intraoperative fine needle aspirations - diagnosis and typing of lung cancer in small biopsies: challenges and limitations [J].
Biancosino, Christian ;
Krueger, Marcus ;
Vollmer, Ekkehard ;
Welker, Lutz .
DIAGNOSTIC PATHOLOGY, 2016, 11
[5]   Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer [J].
Bird, Benjamin ;
Miljkovic, Milos ;
Remiszewski, Stan ;
Akalin, Ali ;
Kon, Mark ;
Diem, Max .
LABORATORY INVESTIGATION, 2012, 92 (09) :1358-1373
[6]   Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis [J].
Calligaris, David ;
Caragacianu, Diana ;
Liu, Xiaohui ;
Norton, Isaiah ;
Thompson, Christopher J. ;
Richardson, Andrea L. ;
Golshan, Mehra ;
Easterling, Michael L. ;
Santagata, Sandro ;
Dillon, Deborah A. ;
Jolesz, Ferenc A. ;
Agar, Nathalie Y. R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (42) :15184-15189
[7]   Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies [J].
DeHoog, Rachel J. ;
Zhang, Jialing ;
Alore, Elizabeth ;
Lin, John Q. ;
Yu, Wendong ;
Woody, Spencer ;
Almendariz, Christopher ;
Lin, Monica ;
Engelsman, Anton F. ;
Sidhu, Stan B. ;
Tibshirani, Robert ;
Suliburk, James ;
Eberlin, Livia S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (43) :21401-21408
[8]   Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging [J].
Doria, Maria Luisa ;
McKenzie, James S. ;
Mroz, Anna ;
Phelps, David L. ;
Speller, Abigail ;
Rosini, Francesca ;
Strittmatter, Nicole ;
Golf, Ottmar ;
Veselkov, Kirill ;
Brown, Robert ;
Ghaem-Maghami, Sadaf ;
Takats, Zoltan .
SCIENTIFIC REPORTS, 2016, 6
[9]   Nondestructive, Histologically Compatible Tissue Imaging by Desorption Electrospray Ionization Mass Spectrometry [J].
Eberlin, Livia S. ;
Ferreira, Christina R. ;
Dill, Allison L. ;
Ifa, Demian R. ;
Cheng, Liang ;
Cooks, R. Graham .
CHEMBIOCHEM, 2011, 12 (14) :2129-2132
[10]   Ambient Ionization Mass Spectrometry: Recent Developments and Applications [J].
Feider, Clara L. ;
Krieger, Anna ;
DeHoog, Rachel J. ;
Eberlin, Livia S. .
ANALYTICAL CHEMISTRY, 2019, 91 (07) :4266-4290