Implications of the Use of Magnetic Tunnel Junctions as Synapses in Neuromorphic Systems

被引:0
作者
Vincent, Adrien F. [1 ]
Locatelli, Nicolas [1 ]
Wu, Qifan [1 ]
Querlioz, Damien [1 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, CNRS, C2N, F-91405 Orsay, France
来源
PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2017 (GLSVLSI' 17) | 2017年
关键词
MRAM; magnetic tunnel junction; neuromorphic computing; SPIN; MEMORY;
D O I
10.1145/3060403.3060587
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Spin transfer torque magnetic random access memory (STT-MRAM) is a major breakthrough for embedded and standalone memory applications. Its basic cell, the magnetic tunnel junction, can also be used in a low-energy stochastic regime and implement a "synaptic" function. It can then be the basic element for learning-capable neuromorphic chips that do not separate logic and memory and exploit the magnetic tunnel junctions with an optimum energy efficiency. Implementing this vision, however, raises challenges at the circuit level. Proper addressing of the junctions can perturb their synaptic function. In this work, we investigate several architectures for a system based on stochastic synapses, and compare them in terms of reliability and energy efficiency. These results show the high potential of this technology, and pinpoint some main design challenges and tradeoff.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 16 条
  • [1] [Anonymous], 2015, IEDM
  • [2] Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: Stochastic versus deterministic aspects
    Devolder, T.
    Hayakawa, J.
    Ito, K.
    Takahashi, H.
    Ikeda, S.
    Crozat, P.
    Zerounian, N.
    Kim, Joo-Von
    Chappert, C.
    Ohno, H.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (05)
  • [3] Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory
    Diao, Zhitao
    Li, Zhanjie
    Wang, Shengyuang
    Ding, Yunfei
    Panchula, Alex
    Chen, Eugene
    Wang, Lien-Chang
    Huai, Yiming
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (16)
  • [4] Spin dice: A scalable truly random number generator based on spintronics
    Fukushima, Akio
    Seki, Takayuki
    Yakushiji, Kay
    Kubota, Hitoshi
    Imamura, Hiroshi
    Yuasa, Shinji
    Ando, Koji
    [J]. APPLIED PHYSICS EXPRESS, 2014, 7 (08)
  • [5] Nanoscale Memristor Device as Synapse in Neuromorphic Systems
    Jo, Sung Hyun
    Chang, Ting
    Ebong, Idongesit
    Bhadviya, Bhavitavya B.
    Mazumder, Pinaki
    Lu, Wei
    [J]. NANO LETTERS, 2010, 10 (04) : 1297 - 1301
  • [6] Self-Enabled "Error-Free" Switching Circuit for Spin Transfer Torque MRAM and Logic
    Lakys, Yahya
    Zhao, Wei Sheng
    Devolder, Thibaut
    Zhang, Yue
    Klein, Jacques-Olivier
    Ravelosona, Dafine
    Chappert, Claude
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (09) : 2403 - 2406
  • [7] Lecerf G, 2014, IEEE INT SYMP CIRC S, P1568, DOI 10.1109/ISCAS.2014.6865448
  • [8] Training andoperation of an integrated neuromorphic network based on metal-oxide memristors
    Prezioso, M.
    Merrikh-Bayat, F.
    Hoskins, B. D.
    Adam, G. C.
    Likharev, K. K.
    Strukov, D. B.
    [J]. NATURE, 2015, 521 (7550) : 61 - 64
  • [9] Bioinspired Programming of Memory Devices for Implementing an Inference Engine
    Querlioz, Damien
    Bichler, Olivier
    Vincent, Adrien Francis
    Gamrat, Christian
    [J]. PROCEEDINGS OF THE IEEE, 2015, 103 (08) : 1398 - 1416
  • [10] Plasticity in memristive devices for spiking neural networks
    Saighi, Sylvain
    Mayr, Christian G.
    Serrano-Gotarredona, Teresa
    Schmidt, Heidemarie
    Lecerf, Gwendal
    Tomas, Jean
    Grollier, Julie
    Boyn, Soeren
    Vincent, Adrien F.
    Querlioz, Damien
    La Barbera, Selina
    Alibart, Fabien
    Vuillaume, Dominique
    Bichler, Olivier
    Gamrat, Christian
    Linares-Barranco, Bernabe
    [J]. FRONTIERS IN NEUROSCIENCE, 2015, 9