Higher order monotonic functions of several variables

被引:8
作者
Ressel, Paul [1 ]
机构
[1] Katholische Univ Eichstatt Ingolstadt, MGF, D-85072 Eichstatt, Germany
关键词
Higher order monotonic; n-monotone; Absolutely monotone; Bauer simplex; Multivariate distribution function;
D O I
10.1007/s11117-013-0244-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multivariate functions with a specific degree of higher order monotonicity in each variable are introduced. When normalized, they turn out to form a simplex whose extreme points are precisely the tensor products of their univariate counterparts. Under natural conditions on the degrees these functions will be shown to operate on each other.
引用
收藏
页码:257 / 285
页数:29
相关论文
共 9 条
[1]  
Berg C., 1984, Harmonic Analysis on Semigroups. GTM, DOI DOI 10.1007/978-1-4612-1128-0
[2]  
BOAS R.P., 1940, Duke Math. J., V7, P496
[3]  
Lorentz G. G., 1953, Bernstein Polynomials
[4]   EXTREMAL ELEMENTS OF CONVEX CONE BN OF FUNCTIONS [J].
MCLACHLAN, EK .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) :987-+
[5]   Functions operating on multivariate distribution and survival functions-With applications to classical mean-values and to copulas [J].
Ressel, Paul .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) :55-67
[6]   Monotonicity properties of multivariate distribution and survival functions - With an application to Levy-frailty copulas [J].
Ressel, Paul .
JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (03) :393-404
[7]  
Roberts A. W., 1973, Convex Functions
[8]  
Widder D. V., 1941, The Laplace Transform
[9]   MULTIPLY MONOTONE FUNCTIONS AND THEIR LAPLACE TRANSFORMS [J].
WILLIAMSON, RE .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (02) :189-207