Electroosmotic pumps for microflow analysis

被引:70
作者
Wang, Xiayan [1 ]
Wang, Shili [1 ]
Gendhar, Brina [1 ]
Cheng, Chang [1 ]
Byun, Chang Kyu [2 ]
Li, Guanbin [1 ]
Zhao, Meiping [3 ]
Liu, Shaorong [1 ]
机构
[1] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA
[2] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Constant flow; Electroosmosis; Electroosmotic flow; Electroosmotic pump; Lab-on-chip; Microanalytical system; Microchip pump; Micropump; Microflow analysis; Pulse-free flow; SEQUENTIAL INJECTION-ANALYSIS; MONOLITHIC STATIONARY PHASES; FLOW-ANALYSIS SYSTEM; LIQUID-CHROMATOGRAPHY; CAPILLARY ELECTROCHROMATOGRAPHY; POLYMER MONOLITHS; EXCHANGE; SILICA; DELIVERY; FORMAT;
D O I
10.1016/j.trac.2008.09.014
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 57 条
[1]   Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen [J].
Aoki, Hiroshi ;
Kubo, Takuya ;
Ikegami, Tohru ;
Tanaka, Nobuo ;
Hosoya, Ken ;
Tokuda, Daisuke ;
Ishizuka, Norio .
JOURNAL OF CHROMATOGRAPHY A, 2006, 1119 (1-2) :66-79
[2]  
Berthelot M.P. E., 1859, REP CHIM APPL, V1, P284, DOI DOI 10.1056/NEJMOA1708131
[3]  
BOCKRIS JO, 1970, MODERN ELECTROCHEMIS, V2, P826
[4]   Long-term stable electroosmotic pump with ion exchange membranes [J].
Brask, A ;
Kutter, JP ;
Bruus, H .
LAB ON A CHIP, 2005, 5 (07) :730-738
[5]  
Buie C.R., 2006, ECS T, V3, P1279
[6]   Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping [J].
Buie, Cullen R. ;
Posner, Jonathan D. ;
Fabian, Tibor ;
Cha, Suk-Won ;
Kim, Daejoong ;
Prinz, Fritz B. ;
Eaton, John K. ;
Santiago, Juan G. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :191-202
[7]   Electroosmosis-based nanopipettor [J].
Byun, Chang Kyu ;
Wang, Xiayan ;
Pu, Qiaosheng ;
Liu, Shaorong .
ANALYTICAL CHEMISTRY, 2007, 79 (10) :3862-3866
[8]   Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography [J].
Chen, LX ;
Ma, JP ;
Guan, YF .
JOURNAL OF CHROMATOGRAPHY A, 2004, 1028 (02) :219-226
[9]   An electroosmotic pump for packed capillary liquid chromatography [J].
Chen, LX ;
Ma, JP ;
Guan, YF .
MICROCHEMICAL JOURNAL, 2003, 75 (01) :15-21
[10]   An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays [J].
Chen, Z ;
Wang, P ;
Chang, HC .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 382 (03) :817-824