Minimal bricks have many vertices of small degree

被引:6
作者
Bruhn, Henning [1 ]
Stein, Maya [2 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago 2120, Chile
关键词
D O I
10.1016/j.ejc.2013.06.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every minimal brick on n vertices has at least n/9 vertices of degree at most 4. (C) 2013 Published by Elsevier Ltd
引用
收藏
页码:261 / 269
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 2003, COMBINATORIAL OPTIMI
[2]   How to build a brick [J].
de Carvalho, Marcelo H. ;
Lucchesi, Claudio L. ;
Murty, U. S. R. .
DISCRETE MATHEMATICS, 2006, 306 (19-20) :2383-2410
[3]   BRICK DECOMPOSITIONS AND THE MATCHING RANK OF GRAPHS [J].
EDMONDS, J ;
LOVASZ, L ;
PULLEYBLANK, WR .
COMBINATORICA, 1982, 2 (03) :247-274
[4]   OPERATIONS PRESERVING THE PFAFFIAN PROPERTY OF A GRAPH [J].
LITTLE, CHC ;
RENDL, F .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 50 :248-257
[5]   MATCHING STRUCTURE AND THE MATCHING LATTICE [J].
LOVASZ, L .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 43 (02) :187-222
[6]  
Lovasz L., 1986, MATCHING THEORY
[7]   Generating bricks [J].
Norine, Serguei ;
Thomas, Robin .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) :769-817
[8]   Minimal bricks [J].
Norine, Serguei ;
Thomas, Robin .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) :505-513