STRONG CONVERGENCE THEOREMS BY SHRINKING PROJECTION METHODS FOR GENERALIZED SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES

被引:0
|
作者
Komiya, Hidetoshi [1 ]
Takahashi, Wataru [2 ,3 ,4 ]
机构
[1] Keio Univ, Fac Business & Commerce, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[2] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2016年 / 12卷 / 01期
基金
日本学术振兴会;
关键词
maximal monotone operator; inverse strongly monotone mapping; fixed point; strong convergence theorem; hybrid method; equilibrium problem; split feasibility problem; FIXED-POINT THEOREMS; NONEXPANSIVE-MAPPINGS; MONOTONE MAPPINGS; EQUILIBRIUM PROBLEMS; NONLINEAR MAPPINGS; HYBRID MAPPINGS; OPERATORS; WEAK;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider new generalized split feasibility problems and then obtain two strong convergence theorems by shrinking projection methods in Hilbert spaces. As applications, we get new strong convergence theorems which are connected with the split feasibility problem and an equilibrium problem.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] GENERALIZED SPLIT FEASIBILITY PROBLEMS AND STRONG CONVERGENCE THEOREMS IN HILBERT SPACES
    Hojo, Mayumi
    Plubtieng, Somyot
    Takahashi, Wataru
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (01): : 101 - 118
  • [2] STRONG CONVERGENCE THEOREMS BY HYBRID METHODS FOR SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES
    Alsulami, Saud M.
    Latif, Abdul
    Takahashi, Wataru
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (12) : 2521 - 2538
  • [3] Strong Convergence Theorems for Generalized Split Feasibility Problems in Banach Spaces
    Zi, Xuejiao
    Ma, Zhaoli
    Du, Wei-Shih
    MATHEMATICS, 2020, 8 (06)
  • [4] Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces
    Yuchao Tang
    Liwei Liu
    Journal of Inequalities and Applications, 2016
  • [5] Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces
    Tang, Yuchao
    Liu, Liwei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [6] STRONG CONVERGENCE THEOREMS FOR RELAXED SPLIT FEASIBILITY PROBLEMS WITH RELATED RESULTS IN HILBERT SPACES
    Chuang, Chih-Sheng
    Hong, Chung-Chien
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (01) : 135 - 155
  • [7] Strong convergence theorems for split inclusion problems in Hilbert spaces
    Dianlu Tian
    Luoyi Shi
    Rudong Chen
    Journal of Fixed Point Theory and Applications, 2017, 19 : 1501 - 1514
  • [8] Strong convergence theorems for split inclusion problems in Hilbert spaces
    Tian, Dianlu
    Shi, Luoyi
    Chen, Rudong
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (02) : 1501 - 1514
  • [9] Strong Convergence Theorems under Shrinking Projection Methods for Split Common Fixed Point Problems in Two Banach Spaces
    Takahashi, Wataru
    Yao, Jen-Chih
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (04) : 1097 - 1118
  • [10] STRONG CONVERGENCE THEOREMS UNDER SHRINKING PROJECTION METHODS FOR SPLIT COMMON NULL POINT PROBLEMS IN TWO BANACH SPACES
    Takahashi, Wataru
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (08) : 1417 - 1435