Fe3O4 and iminodiacetic acid modified peanut husk as a novel adsorbent for the uptake of Cu (II) and Pb (II) in aqueous solution: Characterization, equilibrium and kinetic study

被引:58
|
作者
Aryee, Aaron Albert [1 ]
Mpatani, Farid Mzee [1 ]
Du, Yangyang [1 ]
Kani, Alexander Nti [1 ]
Dovi, Evans [1 ]
Han, Runping [1 ]
Li, Zhaohui [1 ]
Qu, Lingbo [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, 100 Kexue Rd, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified magnetic peanut husk; Adsorption; Copper ion; Lead ion; Regeneration; HEAVY-METAL IONS; WASTE-WATER; METHYLENE-BLUE; ADSORPTION; REMOVAL; PHOSPHATE; PB(II); CARBON; COPPER; BIOCOMPOSITES;
D O I
10.1016/j.envpol.2020.115729
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The presence of higher concentrations of heavy metals in water affects its quality with a concomitant adverse effect on its users thus their removal is paramount. A novel adsorbent, PN-Fe3O4-IDA derived from the chemical modification of peanut husk (a low-cost agricultural biomass produced in significant quantities globally) using magnetic nanoparticles (Fe3O4) and iminodiacetic acid was utilized for the remediation of heavy metals in aqueous solution. Analytical techniques vis-a-vis the Fourier-Transform Infrared, Scanning Electron Microscope, Brunauer Emmett Teller, X-ray photoelectron spectroscopy and X-ray Diffraction were applied for the characterization of PN-Fe3O4-IDA. Results from the characterization studies showed that PN-Fe3O4-IDA possessed a mesoporous structure, a heterogeneous surface and functional groups such as carboxylic acid and a tertiary nitrogen atom which enhanced its adsorption capacities as well as magnetic properties which ensured its easy removal from the solution using a magnet. The maximum uptake of Pb and Cu onto PN-Fe3O4-IDA was 0.36 and 0.75 mmol g(-1) (at 318 K) respectively with the chemisorption process being the major reaction pathway for the processes. The synthesized adsorbent exhibits significant adsorption capacity for the selected pollutants as well as some unique features which promotes its use as an adsorbent for wastewater remediation processes. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fe3O4 Nanoparticles Decorated with a Modified Carbon Quantum Dot Shell: Synthesis, Characterization and Its Evaluation as an Efficient Adsorbent for Cu(ii) and Zn(ii) Ions Adsorption
    Akbarpour, Tahereh
    Khazaei, Ardeshir
    Mohammadi, Mahsa
    Sarmasti, Negin
    POLYCYCLIC AROMATIC COMPOUNDS, 2025,
  • [22] Bioremoval and recovery of Cu(II) and Pb(II) from aqueous solution by a novel biosorbent watermelon (Citrullus lanatus) seed hulls: Kinetic study, equilibrium isotherm, SEM and FTIR analysis
    Akkaya, Guelbahar
    Guzel, Fuat
    DESALINATION AND WATER TREATMENT, 2013, 51 (37-39) : 7311 - 7322
  • [23] Water Soluble Schiff Base Functinalized Fe3O4 Magnetic Nano-Particles as a Novel Adsorbent for the Removal of Pb(II) and Cu(II) Metal Ions from Aqueous Solutions
    Setoodehkhah, Moslem
    Momeni, Soroush
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2018, 28 (03) : 1098 - 1106
  • [24] Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions
    Liu, Yu
    Fu, Ruiqi
    Sun, Yue
    Zhou, Xiaoxin
    Baig, Shams Ali
    Xu, Xinhua
    APPLIED SURFACE SCIENCE, 2016, 369 : 267 - 276
  • [25] Chemically modified bentonite/Fe3O4 nanocomposite for Pb(II), Cd(II), and Ni(II) removal from synthetic wastewater
    Ahmadi, Fatemeh
    Esmaeili, Hossein
    DESALINATION AND WATER TREATMENT, 2018, 110 : 154 - 167
  • [26] Degradation of Orange II in aqueous solution by a novel electro/Fe3O4 process
    Lin, Heng
    Hou, Liwei
    Zhang, Hui
    WATER SCIENCE AND TECHNOLOGY, 2013, 68 (11) : 2441 - 2447
  • [27] Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite for the removal of Pb(II) from aqueous solution
    Afshar, Amirhossein
    Sadjadi, Seyed Abolfazl Seyed
    Mollahosseini, Afsaneh
    Eskandarian, Mohammad Reza
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (02) : 669 - 677
  • [28] Synthesis of novel magnetic sulfur-doped Fe3O4 nanoparticles for efficient removal of Pb(II)
    Huang, Xueqiong
    Kong, Long
    Huang, Shouqiang
    Liu, Min
    Li, Liang
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (02) : 164 - 171
  • [29] Sequestration of Ni (II), Pb (II), and Zn (II) utilizing biogenic synthesized Fe3O4/CLPC NCs and modified Fe3O4/CLPC@CS NCs: Process optimization, simulation modeling, and feasibility study
    Chander, Subhash
    Yadav, Sangita
    Gupta, Asha
    Luhach, Neha
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (53) : 114056 - 114077
  • [30] Facile synthesis and characterization of Fe3O4/analcime nanocomposite for the efficient removal of Cu(II) and Cd(II) ions from aqueous media
    Algethami, Faisal K.
    Al-Wasidi, Asma S.
    Al-Farraj, Eida S.
    Katouah, Hanadi A.
    Abdelrahman, Ehab A.
    DISCOVER NANO, 2023, 18 (01)