Hopfield neural networks for on-line parameter estimation

被引:33
作者
Alonso, Hugo [1 ]
Mendonca, Teresa [1 ,2 ]
Rocha, Paula [1 ,3 ]
机构
[1] Univ Aveiro, Unidade Invest Matemat & Aplicacoes, P-3810193 Aveiro, Portugal
[2] Univ Porto, Fac Ciencias, Dept Matemat Aplicada, P-4169007 Oporto, Portugal
[3] Univ Porto, Fac Engn, Dept Engn Electrotecn & Computadores, P-4200465 Oporto, Portugal
关键词
On-line parameter estimation; Hopfield neural networks; Lyapunov stability theory; SYSTEMS;
D O I
10.1016/j.neunet.2009.01.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of using Hopfield Neural Networks (HNNs) for on-line parameter estimation. As presented here, a HNN is a nonautonomous nonlinear dynamical system able to produce a time-evolving estimate of the actual parameterization. The stability analysis of the HNN is carried out under more general assumptions than those previously considered in the literature, yielding a weaker sufficient condition under which the estimation error asymptotically converges to zero. Furthermore, a robustness analysis is made, showing that, under the presence of perturbations, the estimation error converges to a bounded neighbourhood of zero, whose size decreases with the size of the perturbations. The results obtained are illustrated by means of two case studies, where the HNN is compared with two other methods. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:450 / 462
页数:13
相关论文
共 14 条
[1]  
ABE S, 1989, P IEE INT JOINT C NE, V1, P557
[2]   Parametric identification of robotic systems with stable time-varying Hopfield networks [J].
Atencia, M ;
Joya, G ;
Sandoval, F .
NEURAL COMPUTING & APPLICATIONS, 2004, 13 (04) :270-280
[3]   Decentralized maximum-likelihood estimation for sensor networks composed of nonlinearly coupled dynamical systems [J].
Barbarossa, Sergio ;
Scutari, Gesualdo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (07) :3456-3470
[4]   CONTINUOUS HOPFIELD COMPUTATIONAL NETWORK - HARDWARE IMPLEMENTATION [J].
BHAMA, S ;
HASSOUN, MH .
INTERNATIONAL JOURNAL OF ELECTRONICS, 1990, 69 (05) :603-612
[5]  
DICLAUDIO ED, 2000, P IEEE INT S CIRC SY, V4, P521
[6]  
HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141
[7]   NEURONS WITH GRADED RESPONSE HAVE COLLECTIVE COMPUTATIONAL PROPERTIES LIKE THOSE OF 2-STATE NEURONS [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (10) :3088-3092
[8]   Parameter estimation in nonlinear systems using Hopfield neural networks [J].
Hu, ZN ;
Balakrishnan, SN .
JOURNAL OF AIRCRAFT, 2005, 42 (01) :41-53
[9]  
Khalil H. K., 2002, Nonlinear Systems, V3rd
[10]  
Ljung L., 1999, Prentice Hall information and system sciences series, P1, DOI DOI 10.1002/047134608X.W1046.PUB2