Enumeration of Finite Monomial Orderings and Combinatorics of Universal Grobner Bases

被引:0
|
作者
Vasiliev, N. N. [1 ]
Pavlov, D. A. [2 ]
机构
[1] Russian Acad Sci, St Petersburg Branch, VA Steklov Math Inst, St Petersburg 191011, Russia
[2] St Petersburg State Tech Univ, St Petersburg 195251, Russia
关键词
Young Diagram; Polynomial Ideal; Quotient Algebra; Convex Ordering; Monomial Ordering;
D O I
10.1134/S0361768809020030
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of this work is to analyze various classes of finite and total monomial orderings. The concept of monomial ordering plays the key role in the theory of Grobner bases: every basis is determined by a certain ordering. At the same time, in order to define a Grobner basis, it is not necessary to know ordering of all monomials. Instead, it is sufficient to know only a finite interval of the given ordering. We consider combinatorics of finite monomial orderings and its relationship with cells of a universal Grobner basis. For every considered class of orderings (weakly admissible, convex, and admissible), an algorithm for enumerating finite orderings is discussed and combinatorial integer sequences are obtained. An algorithm for computing all minimal finite orderings for an arbitrary Grobner basis that completely determine this basis is presented. The paper presents also an algorithm for computing an extended universal Grobner basis for an arbitrary zero-dimensional ideal.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [1] Enumeration of finite monomial orderings and combinatorics of universal Gröbner bases
    N. N. Vasiliev
    D. A. Pavlov
    Programming and Computer Software, 2009, 35 : 79 - 89
  • [2] Faster Grobner bases for Lie derivatives of ODE systems via monomial orderings
    Bessonov, Mariya
    Ilmer, Ilia
    Konstantinova, Tatiana
    Ovchinnikov, Alexey
    Pogudin, Gleb
    Soto, Pedro
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 234 - 243
  • [3] Monomial orderings, rewriting systems, and Grobner bases for the commutator ideal of a free algebra
    Hermiller, SM
    Kramer, XH
    Laubenbacher, RC
    JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (02) : 133 - 141
  • [4] Grobner bases and standard monomial bases
    Gonciulea, N
    Lakshmibai, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 255 - 260
  • [5] Grobner bases and combinatorics for binary codes
    Borges-Quintana, M.
    Borges-Trenard, M. A.
    Fitzpatrick, P.
    Martinez-Moro, E.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (05) : 393 - 411
  • [6] Universal Grobner bases, integer programming and finite graphs
    Ohsugi, H
    Kitamura, T
    Hibi, T
    COMMUTATIVE ALGEBRA, SINGULARITIES AND COMPUTER ALGEBRA, 2003, 115 : 179 - 190
  • [7] Some Meeting Points of Grobner Bases and Combinatorics
    Felszeghy, Balint
    Ronyai, Lajos
    ALGORITHMIC ALGEBRAIC COMBINATORICS AND GROBNER BASES, 2009, : 207 - 227
  • [8] Quadratic Grobner bases arising from combinatorics
    Ohsugi, Hidefumi
    Hibi, Takayuki
    INTEGER POINTS IN POLYHEDRA - GEOMETRY, NUMBER THEORY, REPRESENTATION THEORY, ALGEBRA, OPTIMIZATION, STATISTICS, 2008, 452 : 123 - +
  • [9] CONSTRUCTING UNIVERSAL GROBNER BASES
    WEISPFENNING, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 408 - 417
  • [10] Minimal Grobner bases and the predictable leading monomial property
    Kuijper, M.
    Schindelar, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) : 104 - 116