Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability

被引:113
作者
Richetto, Juliet [1 ,2 ]
Meyer, Urs [1 ,2 ]
机构
[1] Univ Zurich Vetsuisse, Inst Pharmacol & Toxicol, Zurich, Switzerland
[2] Univ Zurich, Neurosci Ctr Zurich, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
DNA-METHYLATION CHANGES; MONOZYGOTIC TWINS DISCORDANT; PREFRONTAL CORTEX; BIPOLAR DISORDER; TRANSCRIPTIONAL REGULATION; RESTRICTIVE EPIGENOME; HISTONE METHYLATION; GENE-EXPRESSION; PRENATAL STRESS; ANIMAL-MODELS;
D O I
10.1016/j.biopsych.2020.03.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Epigenetic modifications are increasingly recognized to play a role in the etiology and pathophysiology of schizophrenia and other psychiatric disorders with developmental origins. Here, we summarize clinical and preclinical findings of epigenetic alterations in schizophrenia and relevant disease models and discuss their putative origin. Recent findings suggest that certain schizophrenia risk loci can influence stochastic variation in gene expression through epigenetic processes, highlighting the intricate interaction between genetic and epigenetic control of neurodevelopmental trajectories. In addition, a substantial portion of epigenetic alterations in schizophrenia and related disorders may be acquired through environmental factors and may be manifested as molecular "scars." Some of these scars can influence brain functions throughout the entire lifespan and may even be transmitted across generations via epigenetic germline inheritance. Epigenetic modifications, whether caused by genetic or environmental factors, are plausible molecular sources of phenotypic heterogeneity and offer a target for therapeutic interventions. The further elucidation of epigenetic modifications thus may increase our knowledge regarding schizophrenia's heterogeneous etiology and pathophysiology and, in the long term, may advance personalized treatments through the use of biomarker-guided epigenetic interventions.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 150 条
[11]   Animal models of gene-environment interaction in schizophrenia: A dimensional perspective [J].
Ayhan, Yavuz ;
McFarland, Ross ;
Pletnikov, Mikhail V. .
PROGRESS IN NEUROBIOLOGY, 2016, 136 :1-27
[12]   HDAC1 links early life stress to schizophrenia-like phenotypes [J].
Bahari-Javan, Sanaz ;
Varbanov, Hristo ;
Halder, Rashi ;
Benito, Eva ;
Kaurani, Lalit ;
Burkhardt, Susanne ;
Anderson-Schmidt, Heike ;
Anghelescu, Ion ;
Budde, Monika ;
Stilling, Roman M. ;
Costa, Joan ;
Medina, Juan ;
Dietrich, Detlef E. ;
Figge, Christian ;
Folkerts, Here ;
Gade, Katrin ;
Heilbronner, Urs ;
Koller, Manfred ;
Konrad, Carsten ;
Nussbeck, Sara Y. ;
Scherk, Harald ;
Spitzer, Carsten ;
Stierl, Sebastian ;
Stoeckel, Judith ;
Thiel, Andreas ;
von Hagen, Martin ;
Zimmermann, Joerg ;
Zitzelsberger, Antje ;
Schulz, Sybille ;
Schmitt, Andrea ;
Delalle, Ivana ;
Falkai, Peter ;
Schulze, Thomas G. ;
Dityatev, Alexander ;
Sananbenesi, Farahnaz ;
Fischer, Andre .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (23) :E4686-E4694
[13]   Epigenetic and transgenerational reprogramming of brain development [J].
Bale, Tracy L. .
NATURE REVIEWS NEUROSCIENCE, 2015, 16 (06) :332-344
[14]   Differential Expression of Exosomal microRNAs in Prefrontal Cortices of Schizophrenia and Bipolar Disorder Patients [J].
Banigan, Meredith G. ;
Kao, Patricia F. ;
Kozubek, James A. ;
Winslow, Ashley R. ;
Medina, Juan ;
Costa, Joan ;
Schmitt, Andrea ;
Schneider, Anja ;
Cabral, Howard ;
Cagsal-Getkin, Ozge ;
Vanderburg, Charles R. ;
Delalle, Ivana .
PLOS ONE, 2013, 8 (01)
[15]   Dysregulation of miRNA 181b in the temporal cortex in schizophrenia [J].
Beveridge, Natalie J. ;
Tooney, Paul A. ;
Carroll, Adam P. ;
Gardiner, Erin ;
Bowden, Nikola ;
Scott, Rodney J. ;
Tran, Nham ;
Dedova, Irina ;
Cairns, Murray J. .
HUMAN MOLECULAR GENETICS, 2008, 17 (08) :1156-1168
[16]   Conserved Chromosome 2q31 Conformations Are Associated with Transcriptional Regulation of GAD1 GABA Synthesis Enzyme and Altered in Prefrontal Cortex of Subjects with Schizophrenia [J].
Bharadwaj, Rahul ;
Jiang, Yan ;
Mao, Wenjie ;
Jakovcevski, Mira ;
Dincer, Aslihan ;
Krueger, Winfried ;
Garbett, Krassimira ;
Whittle, Catheryne ;
Tushir, Jogender Singh ;
Liu, Jia ;
Sequeira, Adolfo ;
Vawter, Marquis P. ;
Gardner, Paul D. ;
Casaccia, Patrizia ;
Rasmussen, Theodore ;
Bunney, William E., Jr. ;
Mirnics, Karoly ;
Futai, Kensuke ;
Akbarian, Schahram .
JOURNAL OF NEUROSCIENCE, 2013, 33 (29) :11839-+
[17]   Molecular insights into transgenerational non-genetic inheritance of acquired behaviours [J].
Bohacek, Johannes ;
Mansuy, Isabelle M. .
NATURE REVIEWS GENETICS, 2015, 16 (11) :641-652
[18]   Prenatal Exposure to Maternal Infection and Executive Dysfunction in Adult Schizophrenia [J].
Brown, Alan S. ;
Vinogradov, Sophia ;
Kremen, William S. ;
Poole, John H. ;
Deicken, Raymond F. ;
Penner, Justin D. ;
McKeague, Ian W. ;
Kochetkova, Anna ;
Kern, David ;
Schaefer, Catherine A. .
AMERICAN JOURNAL OF PSYCHIATRY, 2009, 166 (06) :683-690
[19]   Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia [J].
Bryois, Julien ;
Garrett, Melanie E. ;
Song, Lingyun ;
Safi, Alexias ;
Giusti-Rodriguez, Paola ;
Johnson, Graham D. ;
Shieh, Annie W. ;
Buil, Alfonso ;
Fullard, John F. ;
Roussos, Panos ;
Sklar, Pamela ;
Akbarian, Schahram ;
Haroutunian, Vahram ;
Stockmeier, Craig A. ;
Wray, Gregory A. ;
White, Kevin P. ;
Liu, Chunyu ;
Reddy, Timothy E. ;
Ashley-Koch, Allison ;
Sullivan, Patrick F. ;
Crawford, Gregory E. .
NATURE COMMUNICATIONS, 2018, 9
[20]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]