On spectral N-Bernoulli measures

被引:156
作者
Dai, Xin-Rong [1 ]
He, Xing-Gang [2 ]
Lau, Ka-Sing [3 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Bernoulli convolution; Fourier transform; Orthogonal; Self-similar; Spectral measure; Spectrum; Bi-zero set; CONSECUTIVE DIGITS; CANTOR MEASURES; FOURIER FRAMES; CONJECTURE; PROPERTY; SET;
D O I
10.1016/j.aim.2014.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 < rho < 1 and N > 1 an integer, let mu be the self-similar measure defined by mu(center dot) = Sigma(N-1)(i=0) 1/N mu(rho(-1)(center dot) - i). We prove that L-2(mu) has an exponential orthonormal basis if and only if rho = 1/q for some q > 0 and N divides q. The special case is the Cantor measure with rho = 1/2k and N = 2 [16], which was proved recently to be the only spectral measure among the Bernoulli convolutions with 0 < rho < 1 [4]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 531
页数:21
相关论文
共 28 条
[1]   A class of spectral Moran measures [J].
An, Li-Xiang ;
He, Xing-Gang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :343-354
[2]  
[Anonymous], 2003, APPL NUMER HARMON AN
[3]   Tiling the integers with translates of one finite set [J].
Coven, EM ;
Meyerowitz, A .
JOURNAL OF ALGEBRA, 1999, 212 (01) :161-174
[4]   Spectral property of Cantor measures with consecutive digits [J].
Dai, Xin-Rong ;
He, Xing-Gang ;
Lai, Chun-Kit .
ADVANCES IN MATHEMATICS, 2013, 242 :187-208
[5]   When does a Bernoulli convolution admit a spectrum? [J].
Dai, Xin-Rong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1681-1693
[6]   Spectrality of one dimensional self-similar measures with consecutive digits [J].
Deng, Qi-Rong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :331-346
[7]   Fourier frequencies in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) :110-137
[8]   Uniformity of measures with Fourier frames [J].
Dutkay, Dorin Ervin ;
Lai, Chun-Kit .
ADVANCES IN MATHEMATICS, 2014, 252 :684-707
[9]   On the Beurling dimension of exponential frames [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu ;
Weber, Eric .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :285-297
[10]   On the spectra of a Cantor measure [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :251-276