On spectral N-Bernoulli measures

被引:150
作者
Dai, Xin-Rong [1 ]
He, Xing-Gang [2 ]
Lau, Ka-Sing [3 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Bernoulli convolution; Fourier transform; Orthogonal; Self-similar; Spectral measure; Spectrum; Bi-zero set; CONSECUTIVE DIGITS; CANTOR MEASURES; FOURIER FRAMES; CONJECTURE; PROPERTY; SET;
D O I
10.1016/j.aim.2014.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 < rho < 1 and N > 1 an integer, let mu be the self-similar measure defined by mu(center dot) = Sigma(N-1)(i=0) 1/N mu(rho(-1)(center dot) - i). We prove that L-2(mu) has an exponential orthonormal basis if and only if rho = 1/q for some q > 0 and N divides q. The special case is the Cantor measure with rho = 1/2k and N = 2 [16], which was proved recently to be the only spectral measure among the Bernoulli convolutions with 0 < rho < 1 [4]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 531
页数:21
相关论文
共 28 条
  • [1] A class of spectral Moran measures
    An, Li-Xiang
    He, Xing-Gang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 343 - 354
  • [2] [Anonymous], 2003, APPL NUMER HARMON AN
  • [3] Tiling the integers with translates of one finite set
    Coven, EM
    Meyerowitz, A
    [J]. JOURNAL OF ALGEBRA, 1999, 212 (01) : 161 - 174
  • [4] Spectral property of Cantor measures with consecutive digits
    Dai, Xin-Rong
    He, Xing-Gang
    Lai, Chun-Kit
    [J]. ADVANCES IN MATHEMATICS, 2013, 242 : 187 - 208
  • [5] When does a Bernoulli convolution admit a spectrum?
    Dai, Xin-Rong
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1681 - 1693
  • [6] Spectrality of one dimensional self-similar measures with consecutive digits
    Deng, Qi-Rong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 331 - 346
  • [7] Fourier frequencies in affine iterated function systems
    Dutkay, Dorin Ervin
    Jorgensen, Palle E. T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) : 110 - 137
  • [8] Uniformity of measures with Fourier frames
    Dutkay, Dorin Ervin
    Lai, Chun-Kit
    [J]. ADVANCES IN MATHEMATICS, 2014, 252 : 684 - 707
  • [9] On the Beurling dimension of exponential frames
    Dutkay, Dorin Ervin
    Han, Deguang
    Sun, Qiyu
    Weber, Eric
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (01) : 285 - 297
  • [10] On the spectra of a Cantor measure
    Dutkay, Dorin Ervin
    Han, Deguang
    Sun, Qiyu
    [J]. ADVANCES IN MATHEMATICS, 2009, 221 (01) : 251 - 276