Regularity for fully nonlinear elliptic equations with Neumann boundary data

被引:58
作者
Milakis, Emmanouil [1 ]
Silvestre, Luis E. [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
fully nonlinear elliptic equations; Neumann boundary conditions; viscosity solutions;
D O I
10.1080/03605300600634999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain local C-alpha , C-1,C-alpha , and C-2,C-alpha regularity results up to the boundary for viscosity solutions of fully nonlinear uniformly elliptic second order equations with Neumann boundary conditions.
引用
收藏
页码:1227 / 1252
页数:26
相关论文
共 13 条
[1]   FULLY NONLINEAR NEUMANN TYPE BOUNDARY-CONDITIONS FOR 2ND-ORDER ELLIPTIC AND PARABOLIC EQUATIONS [J].
BARLES, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (01) :90-106
[2]  
Caffarelli L.A., 1995, AM MATH SOC C PUBLIC, V43
[3]  
CAFFARELLI LA, COMMUNICATION
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]   Regularity of solutions for the generalized inhomogeneous Neumann boundary value problem [J].
Cranny, TR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (02) :292-302
[6]  
Gilbarg D, 1998, Elliptic Partial Differential Equations of Second Order, V224
[7]   VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ISHII, H ;
LIONS, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :26-78
[8]   FULLY NONLINEAR OBLIQUE DERIVATIVE PROBLEMS FOR NONLINEAR 2ND-ORDER ELLIPTIC PDES [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (03) :633-661
[10]  
Krylov N.V., 1983, IZV AKAD NAUK SSSR M, V47, P75