Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization

被引:1307
作者
Rousk, Johannes [1 ]
Brookes, Philip C. [2 ]
Baath, Erland [1 ]
机构
[1] Lund Univ, Dept Microbial Ecol, SE-22362 Lund, Sweden
[2] Rothamsted Res, Dept Soil Sci, Harpenden ALS 2JQ, Herts, England
基金
瑞典研究理事会;
关键词
MICROBIAL COMMUNITIES; LEUCINE INCORPORATION; ORGANIC-MATTER; FUNGAL/BACTERIAL RATIOS; NITROGEN MINERALIZATION; THYMIDINE INCORPORATION; FOREST SOILS; FATTY-ACIDS; BIOMASS; ERGOSTEROL;
D O I
10.1128/AEM.02775-08
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The influence of pH on the relative importance of the two principal decomposer groups in soil, fungi and bacteria, was investigated along a continuous soil pH gradient at Hoosfield acid strip at Rothamsted Research in the United Kingdom. This experimental location provides a uniform pH gradient, ranging from pH 8.3 to 4.0, within 180 m in a silty loam soil on which barley has been continuously grown for more than 100 years. We estimated the importance of fungi and bacteria directly by measuring acetate incorporation into ergosterol to measure fungal growth and leucine and thymidine incorporation to measure bacterial growth. The growth-based measurements revealed a fivefold decrease in bacterial growth and a fivefold increase in fungal growth with lower pH. This resulted in an approximately 30-fold increase in fungal importance, as indicated by the fungal growth/bacterial growth ratio, from pH 8.3 to pH 4.5. In contrast, corresponding effects on biomass markers for fungi (ergosterol and phospholipid fatty acid [PLFA] 18:2 omega 6,9) and bacteria (bacterial PLFAs) showed only a two- to three-fold difference in fungal importance in the same pH interval. The shift in fungal and bacterial importance along the pH gradient decreased the total carbon mineralization, measured as basal respiration, by only about one-third, possibly suggesting functional redundancy. Below pH 4.5 there was universal inhibition of all microbial variables, probably derived from increased inhibitory effects due to release of free aluminum or decreasing plant productivity. To investigate decomposer group importance, growth measurements provided significantly increased sensitivity compared with biomass-based measurements.
引用
收藏
页码:1589 / 1596
页数:8
相关论文
共 66 条
[1]   QUANTIFICATION OF BACTERIAL AND FUNGAL CONTRIBUTIONS TO SOIL RESPIRATION [J].
ANDERSON, JP ;
DOMSCH, KH .
ARCHIV FUR MIKROBIOLOGIE, 1973, 93 (02) :113-127
[2]   Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH [J].
Andersson, S ;
Nilsson, SI ;
Saetre, P .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (01) :1-10
[3]   The automated determination of glucosamine, galactosamine, muramic acid, and mannosamine in soil and root hydrolysates by HPLC [J].
Appuhn, A ;
Joergensen, RG ;
Raubuch, M ;
Scheller, E ;
Wilke, B .
JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2004, 167 (01) :17-21
[4]   In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate [J].
Arao, T .
SOIL BIOLOGY & BIOCHEMISTRY, 1999, 31 (07) :1015-1020
[5]  
Avery B. W., 1995, SOIL ROTHAMSTED LAWE
[7]   GROWTH-RATE AND RESPONSE OF BACTERIAL COMMUNITIES TO PH IN LIMED AND ASH TREATED FOREST SOILS [J].
BAATH, E ;
ARNEBRANT, K .
SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (08) :995-1001
[8]   THYMIDINE INCORPORATION INTO MACROMOLECULES OF BACTERIA EXTRACTED FROM SOIL BY HOMOGENIZATION CENTRIFUGATION [J].
BAATH, E .
SOIL BIOLOGY & BIOCHEMISTRY, 1992, 24 (11) :1157-1165
[9]   Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J].
Bååth, E ;
Anderson, TH .
SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (07) :955-963
[10]   Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria [J].
Bååth, E ;
Pettersson, M ;
Söderberg, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 2001, 33 (11) :1571-1574