Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage

被引:244
|
作者
Zhou, Chao-Qun [1 ]
Lu, Chen-Hua [1 ]
Mai, Lei [1 ]
Bao, Lian-Jun [1 ]
Liu, Liang-Ying [1 ]
Zeng, Eddy Y. [1 ,2 ]
机构
[1] Jinan Univ, Sch Environm, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou 511443, Peoples R China
[2] Jinan Univ, Res Ctr Low Carbon Econ Guangzhou Reg, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Polystyrene nanoplastics; Oryza sativa L; Root uptake; Phytotoxicity; Transcriptomics; ARABIDOPSIS-THALIANA; POLYSTYRENE NANOPLASTICS; ENHANCE TOLERANCE; MICROPLASTICS; STRESS; NANOPARTICLES; MECHANISMS; TOXICITY; EXPOSURE; BIOSYNTHESIS;
D O I
10.1016/j.jhazmat.2020.123412
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Potential adverse effects of nanoplastics (NPs) on marine organisms have received increased attention in recent years. In contrast, few data are available on terrestrial plants, especially on the mechanisms for transport of NPs in plants and phytotoxicity (at both phenotypic and molecular levels) of plants induced by NPs. To address this knowledge gap, we conducted a microcosm study in which hydroponically-cultured rice (Oryza sativa L.) seedlings were exposed to polystyrene (PS)-NPs at 0, 10, 50, and 100 mg L-1 for 16 d and examined for morphological and physiological phenotypes and transcriptomics. Laser confocal scanning micrographs confirmed PS-NPs were uptaken by rice roots, greatly benefitted from the transport activity of aquaporin in rice roots. The significant enhancement (p < 0.05) of antioxidant enzyme activities reflected the oxidative stress response of rice roots upon exposure to PS-NPs. Treatment by PS-NPs decreased root length and increased lateral root numbers. Carbon metabolism was activated (e.g., increased carbon and soluble sugar contents) whereas jasmonic acid and lignin biosynthesis were inhibited. The present study demonstrated the likelihood for transport of PS-NPs in rice roots and induced phytotoxicity by PS-NPs, which should inspire further investigations into the potential human health risks from rice consumption.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Identification of QTLs for cold tolerance at seedling stage in rice (Oryza sativa L.)
    Verma, S. K.
    Xalxo, M. S.
    Saxena, R. R.
    Verulkar, S. B.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2014, 74 (01) : 86 - 89
  • [2] Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage
    Kyu-Seong Lee
    Weon-Young Choi
    Jong-Cheol Ko
    Tae-Soo Kim
    Glenn B. Gregorio
    Planta, 2003, 216 : 1043 - 1046
  • [3] Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage
    Lee, KS
    Choi, WY
    Ko, JC
    Kim, TS
    Gregorio, GB
    PLANTA, 2003, 216 (06) : 1043 - 1046
  • [4] Mapping of quantitative trait loci for gibberellic acid response at rice (Oryza sativa L.) seedling stage
    Dong, YJ
    Kamiuten, H
    Yang, ZN
    Lin, DZ
    Ogawa, T
    Luo, LJ
    Matsuo, H
    PLANT SCIENCE, 2006, 170 (01) : 12 - 17
  • [5] A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.)
    Lou, Qiaojun
    Chen, Liang
    Sun, Zongxiu
    Xing, Yongzhong
    Li, Jun
    Xu, Xiaoyan
    Mei, Hanwei
    Luo, Lijun
    EUPHYTICA, 2007, 158 (1-2) : 87 - 94
  • [6] A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.)
    Qiaojun Lou
    Liang Chen
    Zongxiu Sun
    Yongzhong Xing
    Jun Li
    Xiaoyan Xu
    Hanwei Mei
    Lijun Luo
    Euphytica, 2007, 158 : 87 - 94
  • [7] QTL analysis of mercury tolerance and accumulation at the seedling stage in rice (Oryza sativa L.)
    Yu, You Jian
    Hu, Hai Tao
    Wang, Chang Chun
    Yang, Ling
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (02): : 748 - 752
  • [8] Bimolecular evaluation of three contrasting rice cultivars (Oryza sativa L.) in salt stress response at seedling stage
    Ngoc, Nam Trinh
    Tri, Phuong Nguyen
    Le Hong, Thia
    Quoc, Cuong Duong
    PLANT SCIENCE TODAY, 2022, 9 (02): : 491 - 503
  • [9] RESPONSE OF RICE (Oryza sativa L.) TO SALINITY STRESS AT GERMINATION AND EARLY SEEDLING STAGES
    Balkan, Alpay
    Genctan, Temel
    Bilgin, Oguz
    Ulukan, Hakan
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2015, 52 (02): : 455 - 461
  • [10] Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.)
    Ranawake, Aloka Lanka
    Manangkil, Oliver Escano
    Yoshida, Shinya
    Ishii, Takashi
    Mori, Naoki
    Nakamura, Chiharu
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2014, 28 (06) : 989 - 998