Commutators with idempotent values on multilinear polynomials in prime rings

被引:4
作者
De Filippis, Vincenzo [1 ]
Raza, Mohd Arif [2 ]
Rehman, Nadeem Ur [2 ]
机构
[1] Univ Messina, Fac Engn, I-98166 Messina, Italy
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2017年 / 127卷 / 01期
关键词
Multilinear polynomial; derivations; generalized polynomial identity; prime ring; right ideal; DERIVATIONS; IDEALS; NIL;
D O I
10.1007/s12044-016-0316-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R, f(x (1), . . . , x (n) ) a multilinear polynomial over C, rho a nonzero right ideal of R and m > 1 a fixed integer such that ([d(f(r(1), ..., r(n))), f(r(1), ..., r(n))])(m) = [d(f((r(1), ..., r(n))), f(r(1), ..., r(n))] for all r (1), . . . , r (n) a rho. Then either [f(x (1),aEuro broken vertical bar,x (n) ),x (n+1)]x (n+2) is an identity for rho or d(rho)rho = 0.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 18 条
[1]  
Beidar K.I., 1978, MOSCOW U MATH B, V33, P53
[2]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[3]   Commutators with power central values on a Lie ideal [J].
Carini, L ;
De Filippis, V .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (02) :269-278
[4]  
CARINI L, 1985, B UMI, V6, P497
[5]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[7]   ON THE CENTRALIZERS OF IDEALS AND NIL DERIVATIONS [J].
FELZENSZWALB, B ;
LANSKI, C .
JOURNAL OF ALGEBRA, 1983, 83 (02) :520-530
[8]  
Felzenszwalb B., 1978, CANAD MATH B, V21, P241
[9]  
HERSTEIN IN, 1981, REND DEL CIRC MATH P, V30, P199
[10]  
Kharchenko V. K., 1978, Algebra and Logic, V17, P155