A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry

被引:86
作者
Reparaz, J. S. [1 ]
Chavez-Angel, E. [1 ,2 ]
Wagner, M. R. [1 ]
Graczykowski, B. [1 ]
Gomis-Bresco, J. [1 ]
Alzina, F. [1 ]
Sotomayor Torres, C. M. [1 ,3 ]
机构
[1] ICN2, Barcelona 08193, Spain
[2] UAB, Dept Phys, Barcelona 08193, Spain
[3] ICREA, Barcelona 08010, Spain
关键词
CRYSTAL SILICON LAYERS; TEMPERATURE-DEPENDENCE; THIN-FILMS; SCATTERING; DIFFUSIVITY; GRAPHENE; PHONONS;
D O I
10.1063/1.4867166
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a novel contactless technique for thermal conductivity determination and thermal field mapping based on creating a thermal distribution of phonons using a heating laser, while a second laser probes the local temperature through the spectral position of a Raman active mode. The spatial resolution can be as small as 300 nm, whereas its temperature accuracy is +/- 2 K. We validate this technique investigating the thermal properties of three free-standing single crystalline Si membranes with thickness of 250, 1000, and 2000 nm. We show that for two-dimensional materials such as freestanding membranes or thin films, and for small temperature gradients, the thermal field decays as T(r) proportional to ln(r) in the diffusive limit. The case of large temperature gradients within the membranes leads to an exponential decay of the thermal field, T proportional to exp[ -A center dot ln(r)]. The results demonstrate the full potential of this new contactless method for quantitative determination of thermal properties. The range of materials to which this method is applicable reaches far beyond the here demonstrated case of Si, as the only requirement is the presence of a Raman active mode. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates [J].
Asheghi, M ;
Touzelbaev, MN ;
Goodson, KE ;
Leung, YK ;
Wong, SS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (01) :30-36
[2]   Phonon-boundary scattering in thin silicon layers [J].
Asheghi, M ;
Leung, YK ;
Wong, SS ;
Goodson, KE .
APPLIED PHYSICS LETTERS, 1997, 71 (13) :1798-1800
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[5]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[6]   Improved apparatus for picosecond pump-and-probe optical measurements [J].
Capinski, WS ;
Maris, HJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (08) :2720-2726
[7]   Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry [J].
Chavez-Angel, E. ;
Reparaz, J. S. ;
Gomis-Bresco, J. ;
Wagner, M. R. ;
Cuffe, J. ;
Graczykowski, B. ;
Shchepetov, A. ;
Jiang, H. ;
Prunnila, M. ;
Ahopelto, J. ;
Alzina, F. ;
Torres, C. M. Sotomayor .
APL MATERIALS, 2014, 2 (01)
[8]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[9]   A new method for measuring thermal conductivity of thin films [J].
Govorkov, S ;
Ruderman, W ;
Horn, MW ;
Goodman, RB ;
Rothschild, M .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (10) :3828-3834
[10]   LASER-INDUCED SURFACE ACOUSTIC-WAVES AND PHOTOTHERMAL SURFACE GRATINGS GENERATED BY CROSSING 2 PULSED LASER-BEAMS [J].
HARATA, A ;
NISHIMURA, H ;
SAWADA, T .
APPLIED PHYSICS LETTERS, 1990, 57 (02) :132-134