Electrochemical synthesis of core-shell Co-Ni nanorod arrays with facilely regulated magnetic properties

被引:7
作者
Wang, Jing [1 ]
Xiong, Wei [1 ]
Huang, Liang [1 ]
Li, Yuexing [1 ]
Zuo, Zhili [1 ]
Hu, Xinyue [1 ]
Wang, Tao [2 ]
Xiao, John Q. [2 ]
Hu, Jun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Magnetic properties; AAO template; Nanotubes; Core-shell nanostructure; Nanorod arrays; Electrodeposition; NANOWIRES; FABRICATION; ELECTRODEPOSITION; NANOTUBES;
D O I
10.1016/j.physb.2018.11.040
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Ordered Co-Ni core-shell magnetic nanorod arrays were fabricated by a two-step electrodeposition into a self-assembled anodic alumina oxide template. The characterizations of the morphology and elemental distribution indicated the successful fabrication of similar to 260 nm Co core nanorods surrounded by similar to 20 nm concentric Ni shell. The magnetization measurement revealed that the synthesized Co-Ni core-shell nanorod arrays exhibited lower coercivity and higher remanence ratio than plain Co nanorod arrays, offering a possibility to regulate suitable coercivity at the nanoscale. It was also demonstrated combing tube and rod to form core-shell structure offered the perspective for engineering the magnetic properties without changing geometric parameters or with minimally altered crystalline structure.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 33 条
[1]  
Bao JC, 2001, ADV MATER, V13, P1631, DOI 10.1002/1521-4095(200111)13:21<1631::AID-ADMA1631>3.0.CO
[2]  
2-R
[3]   Electrodeposition of hexagonal Co nanowires with large magnetocrystalline anisotropy [J].
Cattaneo, L. ;
Franz, S. ;
Albertini, F. ;
Ranzieri, P. ;
Vicenzo, A. ;
Bestetti, M. ;
Cavallotti, P. L. .
ELECTROCHIMICA ACTA, 2012, 85 :57-65
[4]   Thermal Route for the Synthesis of Maghemite/Hematite Core/Shell Nanowires [J].
Cortes-Llanos, Belen ;
Serrano, Aida ;
Munoz-Noval, Alvaro ;
Urones-Garrote, Esteban ;
del Campo, Adolfo ;
Marco, Jose F. ;
Ayuso-Sacido, Angel ;
Perez, Lucas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (41) :23158-23165
[5]   Hierarchical Assembly of α-Fe2O3 Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors [J].
Dai, Mingjun ;
Zhao, Liupeng ;
Gao, Hongyu ;
Sun, Peng ;
Liu, Fengmin ;
Zhang, Sean ;
Shimanoe, Kengo ;
Yamazoe, Noboru ;
Lu, Geyu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (10) :8919-8928
[6]   Synthesis and characterization of highly ordered cobalt-magnetite nanocable arrays [J].
Daly, Brian ;
Arnold, Donna C. ;
Kulkarni, Jaideep S. ;
Kazakova, Olga ;
Shaw, Matthew T. ;
Nikitenko, Sergey ;
Erts, Donats ;
Morris, Michael A. ;
Holmes, Justin D. .
SMALL, 2006, 2 (11) :1299-1307
[7]   Lithography-Free Fabrication of Core Shell GaAs Nanowire Tunnel Diodes [J].
Darbandi, A. ;
Kavanagh, K. L. ;
Watkins, S. P. .
NANO LETTERS, 2015, 15 (08) :5408-5413
[8]   Size-dependent properties of magnetic iron oxide nanocrystals [J].
Demortiere, A. ;
Panissod, P. ;
Pichon, B. P. ;
Pourroy, G. ;
Guillon, D. ;
Donnio, B. ;
Begin-Colin, S. .
NANOSCALE, 2011, 3 (01) :225-232
[9]   Producing shape-controlled metal nanowires and nanotubes by an electrochemical method [J].
Fukunaka, Y ;
Motoyama, M ;
Konishi, Y ;
Ishii, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :C62-C64
[10]   Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube - In nanowire core-shell heterostructures [J].
Gautam, Ujjal K. ;
Fang, Xiaosheng ;
Bando, Yoshio ;
Zhan, Jinhua ;
Golberg, Dmitri .
ACS NANO, 2008, 2 (05) :1015-1021