An optimization approach to solving the split feasibility problem in Hilbert spaces

被引:44
作者
Reich, Simeon [1 ]
Tuyen, Truong Minh [2 ]
Ha, Mai Thi Ngoc [3 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
[3] Thai Nguyen Univ Agr & Forestry, Thai Nguyen, Vietnam
基金
以色列科学基金会;
关键词
Hilbert space; Metric projection; Nonexpansive mapping; Split feasibility problem; SHRINKING PROJECTION METHOD; STRONG-CONVERGENCE; ALGORITHMS; SETS;
D O I
10.1007/s10898-020-00964-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the split feasibility problem with multiple output sets in Hilbert spaces. In order to solve this problem we introduce two iterative methods by using an optimization approach. Our iterative methods do not depend on the norm of the transfer operators.
引用
收藏
页码:837 / 852
页数:16
相关论文
共 22 条
[1]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[3]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[4]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[5]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[6]  
Censor Y., 1994, Numer Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]
[7]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[8]   SHRINKING PROJECTION ALGORITHMS FOR THE SPLIT COMMON NULL POINT PROBLEM [J].
Dadashi, Vahid .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) :299-306
[9]   A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance [J].
Eskandani, G. Zamani ;
Raeisi, M. ;
Rassias, Themistocles M. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
[10]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Non-expansive Mappings, VVolume 83