Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p

被引:91
作者
Zhang, XP
Lester, RL
Dickson, RC
机构
[1] Univ Kentucky, Coll Med, Dept Mol & Cellular Biochem, Lexington, KY 40536 USA
[2] Univ Kentucky, Coll Med, Lucille P Markey Canc Ctr, Lexington, KY 40536 USA
关键词
D O I
10.1074/jbc.M400299200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae homologs, Pkh1/2p, of the mammalian 3-phosphoinositide-dependent protein kinase 1 (PDK1) regulate the Pkc1-MAP kinase cascade and the partially parallel Ypk1/2p pathway(s) that control growth and cell integrity. Mammalian PDK1 is regulated by 3-phosphoinositides, whereas Pkh1/2p are regulated by sphingolipid long-chain bases (LCBs). Recently Pkh1/2p were found to complex with two related proteins, Pil1p (Ygr086) and Lsp1p (Yp1004). Because these two proteins are not related to any known protein we sought to characterize their functions. We show that Pkh1p phosphorylates both proteins in vitro in a reaction that is only weakly regulated by LCBs. In contrast, LCBs inhibit phosphorylation of Pil1p by Pkh2p, whereas LCBs stimulate phosphorylation of Lsp1p by Pkh2p. We find that Pil1p and Lsp1p downregulate resistance to heat stress and, specifically, that they down-regulate the activity of the Pkc1p-MAP and Ypk1p pathways during heat stress. Pil1p and Lsp1p are thus the first proteins identified as regulators of Pkh1/2p. An unexpected finding was that the level of Ypk1p is greatly reduced in pkc1Delta cells, indicating that Pkc1p controls the level of Ypk1p. Homologs of Pil1p and Lsp1p are widespread in nature, and our results suggest that they may be negative regulators of PDK-like protein kinases and their downstream cellular pathways that control cell growth and survival.
引用
收藏
页码:22030 / 22038
页数:9
相关论文
共 39 条
  • [1] Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha
    Alessi, DR
    James, SR
    Downes, CP
    Holmes, AB
    Gaffney, PRJ
    Reese, CB
    Cohen, P
    [J]. CURRENT BIOLOGY, 1997, 7 (04) : 261 - 269
  • [2] ALESSI DR, 1995, METHOD ENZYMOL, V255, P279
  • [3] Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
    Anderson, RM
    Bitterman, KJ
    Wood, JG
    Medvedik, O
    Cohen, H
    Lin, SS
    Manchester, JK
    Gordon, JI
    Sinclair, DA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) : 18881 - 18890
  • [4] Brachmann CB, 1998, YEAST, V14, P115
  • [5] Ten years of protein kinase B signalling: a hard Akt to follow
    Brazil, DP
    Hemmings, BA
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) : 657 - 664
  • [6] CLONING AND CHARACTERIZATION OF LCB1, A SACCHAROMYCES GENE REQUIRED FOR BIOSYNTHESIS OF THE LONG-CHAIN BASE COMPONENT OF SPHINGOLIPIDS
    BUEDE, R
    RINKERSCHAFFER, C
    PINTO, WJ
    LESTER, RL
    DICKSON, RC
    [J]. JOURNAL OF BACTERIOLOGY, 1991, 173 (14) : 4325 - 4332
  • [7] Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast
    Casamayor, A
    Torrance, PD
    Kobayashi, T
    Thorner, J
    Alessi, DR
    [J]. CURRENT BIOLOGY, 1999, 9 (04) : 186 - 197
  • [8] Remodeling of yeast genome expression in response to environmental changes
    Causton, HC
    Ren, B
    Koh, SS
    Harbison, CT
    Kanin, E
    Jennings, EG
    Lee, TI
    True, HL
    Lander, ES
    Young, RA
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) : 323 - 337
  • [9] The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast
    deHart, AKA
    Schnell, JD
    Allen, DA
    Hicke, L
    [J]. JOURNAL OF CELL BIOLOGY, 2002, 156 (02) : 241 - 248
  • [10] Cell wall stress depolarizes cell growth via hyperactivation of RHO1
    Delley, PA
    Hall, MN
    [J]. JOURNAL OF CELL BIOLOGY, 1999, 147 (01) : 163 - 174