SHELLS OF TWISTED FLAG VARIETIES AND THE ROST INVARIANT

被引:17
作者
Garibaldi, S. [1 ]
Petrov, V. [2 ,3 ]
Semenov, N. [4 ]
机构
[1] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA USA
[2] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, St Petersburg 196140, Russia
[3] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199034, Russia
[4] Univ Munich, Math Inst, Munich, Germany
基金
美国国家科学基金会;
关键词
QUASI-SPLIT GROUPS; EQUIVARIANT COHOMOLOGY; MOTIVIC DECOMPOSITION; HASSE PRINCIPLE; STEENROD OPERATIONS; GALOIS COHOMOLOGY; CLASSICAL-GROUPS; FUNCTION-FIELDS; TITS ALGEBRAS; FORMS;
D O I
10.1215/00127094-3165434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce two new general methods to compute the Chow motives of twisted flag varieties and settle a 20-year-old conjecture of Markus Rost about the Rost invariant for groups of type E-7.
引用
收藏
页码:285 / 339
页数:55
相关论文
共 80 条
[11]   A GOING DOWN THEOREM FOR GROTHENDIECK CHOW MOTIVES [J].
de Clercq, Charles .
QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (03) :721-728
[12]  
Demazure M., 1974, ANN SCI ECOLE NORM S, V7, P53
[13]   A unified formula for Steenrod operations in flag manifolds [J].
Duan, Haibao ;
Zhao, Xuezhi .
COMPOSITIO MATHEMATICA, 2007, 143 (01) :257-270
[14]   Multiplicative rule of Schubert classes [J].
Duan, HB .
INVENTIONES MATHEMATICAE, 2005, 159 (02) :407-436
[15]  
Elman EKM08 R., 2008, Amer. Math. Soc. Colloq. Publ., V56, DOI [10.1090/coll/056, DOI 10.1090/COLL/056]
[16]  
Flenner H., 1999, SPRINGER MONOGRAPHS, DOI [10.1007/978-3-662-03817-8, DOI 10.1007/978-3-662-03817-8]
[17]   The Yang-Baxter equation, symmetric functions, and Schubert polynomials [J].
Fomin, S ;
Kirillov, AN .
DISCRETE MATHEMATICS, 1996, 153 (1-3) :123-143
[18]   The Rost invariant has trivial kernel for quasi-split groups of low rank [J].
Garibaldi, RS .
COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (04) :684-711
[19]  
Garibaldi S., 2007, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V19, P52
[20]  
GARIBALDI S., 2009, CONT MATH, V493, P131, DOI [10.1090/conm/493/09667, DOI 10.1090/C0NM/493/09667]