A Subgradient-Type Extrapolation Cyclic Method for Solving an Equilibrium Problem over the Common Fixed-Point Sets

被引:1
作者
Promsinchai, Porntip [1 ,2 ]
Nimana, Nimit [3 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
[2] Naresuan Univ, Fac Sci, Ctr Excellence Nonlinear Anal & Optimizat, Phitsanulok 65000, Thailand
[3] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
convergence analysis; cutter; equilibrium problem; fixed point; monotone operator; STRONG-CONVERGENCE; PRINCIPLE; SCHEME;
D O I
10.3390/sym14050992
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider the solving of an equilibrium problem over the common fixed set of cutter mappings in a real Hilbert space. To this end, we present a subgradient-type extrapolation cyclic method. The proposed method is generated based on the ideas of a subgradient method and an extrapolated cyclic cutter method. We prove a strong convergence of the method provided that some suitable assumptions of step-size sequences are assumed. We finally show the numerical behavior of the proposed method.
引用
收藏
页数:18
相关论文
共 50 条
[1]   A subgradient-type method for the equilibrium problem over the fixed point set and its applications [J].
Iiduka, Hideaki ;
Yamada, Isao .
OPTIMIZATION, 2009, 58 (02) :251-261
[2]   The subgradient extragradient method for approximation of fixed-point problem and modification of equilibrium problem [J].
Saechou, Kanyanee ;
Kangtunyakarn, Atid .
OPTIMIZATION, 2023, 72 (02) :383-410
[3]   A Greedy Fixed-Point Method for Solving Variational Inequalities over the Fixed-Point Constraints [J].
Prangprakhon, Mootta ;
Pioon, Jedsadapong ;
Nimana, Nimit ;
Cho, Yeol Je .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2025, 46 (06) :395-424
[4]   An Inertial Subgradient Extragradient Method for Efficiently Solving Fixed-Point and Equilibrium Problems in Infinite Families of Demimetric Mappings [J].
Rehman, Habib Ur ;
Amir, Fouzia ;
Alzabut, Jehad ;
Azim, Mohammad Athar .
MATHEMATICS, 2025, 13 (01)
[5]   Solving equilibrium and fixed-point problems in Hilbert spaces: a new strongly convergent inertial subgradient extragradient method [J].
Rehman, Habib Ur ;
Ghosh, Debdas ;
Izuchukwu, Chinedu ;
Zhao, Xiaopeng .
OPTIMIZATION, 2025,
[6]   A Fixed-Point Subgradient Splitting Method for Solving Constrained Convex Optimization Problems [J].
Nimana, Nimit .
SYMMETRY-BASEL, 2020, 12 (03)
[7]   The subgradient extragradient method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces [J].
Jolaoso, L. O. .
OPTIMIZATION, 2022, 71 (14) :4051-4081
[8]   Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces [J].
Xie, Zhongbing ;
Cai, Gang ;
Tan, Bing .
OPTIMIZATION, 2024, 73 (05) :1329-1354
[9]   Viscosity algorithm for solving split generalized equilibrium problem and fixed-point problem [J].
Abubakar, Jamilu ;
Deepho, Jitsupa .
CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (02) :263-280
[10]   Double inertial subgradient extragradient algorithm for solving equilibrium problems and common fixed point problems with application to image restoration [J].
Cholamjiak, Prasit ;
Xie, Zhongbing ;
Li, Min ;
Paimsang, Papinwich .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460