Numerical implementation of harmonic polylogarithms to weight w=8

被引:35
作者
Ablinger, J. [1 ]
Bluemlein, J. [2 ]
Round, M. [1 ,2 ]
Schneider, C. [1 ]
机构
[1] Johannes Kepler Univ Linz, RISC, Altenbergerstr 69, A-4040 Linz, Austria
[2] DESY, Deutsch Elektronen Synchrotron, Platanenallee 6, D-15738 Zeuthen, Germany
基金
奥地利科学基金会;
关键词
Harmonic polylogarithms; Numeric representation; Cyclotomic harmonic polylogarithms; MELLIN TRANSFORMS; ANALYTIC CONTINUATION; SUMS; INTEGRALS;
D O I
10.1016/j.cpc.2019.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the FORTRAN-code HPOLY. f for the numerical calculation of harmonic polylogarithms up to w = 8 at an absolute accuracy of similar to 10(-15) or better. Using algebraic and argument relations the numerical representation can be limited to the range x is an element of [0, root 2-1 ]. We provide replacement files to map all harmonic polylogarithms to a basis and the usual range of arguments x is an element of ] -infinity, +infinity[ to the above interval analytically. We also briefly comment on a numerical implementation of real valued cyclotomic harmonic polylogarithms. Program Summary Program title: HPOLY.f Program Files doi http://dx.doi.org/10.17632/vnc3fc79cr.1 Licensing provisions: CC by NC 3.0 Programming Language: Fortran Nature of problem: Harmonic polylogarithms form key building blocks in the analytic calculation of many multi-loop and multi-leg calculations in high energy physics and other disciplines of modern physics. Their numerical representation is provided. Solution method: Bernoulli-improvement of series expansions, Ref. [1]. Additional comments: Program obtainable from https://www-zeuthen.desy.dei-blumleini References: [1] G. 't Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365. (C) 2019 Elsevier B.V. All rights
引用
收藏
页码:189 / 201
页数:13
相关论文
共 45 条
[1]   Heavy quark form factors at three loops in the planar limit [J].
Ablinger, J. ;
Bluemlein, J. ;
Marquard, P. ;
Rana, N. ;
Schneider, C. .
PHYSICS LETTERS B, 2018, 782 :528-532
[2]   The 3-loop pure singlet heavy flavor contributions to the structure function F2(x, Q2) and the anomalous dimension [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
NUCLEAR PHYSICS B, 2015, 890 :48-151
[3]   Iterated binomial sums and their associated iterated integrals [J].
Ablinger, J. ;
Bluemlein, J. ;
Raab, C. G. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
[4]   Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers [J].
Ablinger, J. ;
Bluemlein, J. ;
Schneider, C. .
15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013), 2014, 523
[5]  
Ablinger J., 2012, THESIS
[6]  
Ablinger J., 2014, PoS, VLL2014, P019
[7]  
Ablinger J., 2009, THESIS
[8]  
Ablinger J., NUCL PHYS B
[9]  
Ablinger J., 2017, POS, P010
[10]  
Ablinger J, 2013, TEXT MG SYMB COMPUT, P1, DOI 10.1007/978-3-7091-1616-6_1