Uncertainty quantification has become an efficient tool for uncertainty-aware prediction, but its power in yieldaware optimization has not been well explored from either theoretical or application perspectives. Yield optimization is a much more challenging task. On the one side, optimizing the generally nonconvex probability measure of performance metrics is difficult. On the other side, evaluating the probability measure in each optimization iteration requires massive simulation data, especially, when the process variations are non-Gaussian correlated. This article proposes a data-efficient framework for the yield-aware optimization of photonic ICs. This framework optimizes the design performance with a yield guarantee, and it consists of two modules: 1) a modeling module that builds stochastic surrogate models for design objectives and chance constraints with a few simulation samples and 2) a novel yield optimization module that handles probabilistic objectives and chance constraints in an efficient deterministic way. This deterministic treatment avoids repeatedly evaluating probability measures at each iteration, thus it only requires a few simulations in the whole optimization flow. We validate the accuracy and efficiency of the whole framework by a synthetic example and two photonic ICs. Our optimization method can achieve more than 30x reduction of simulation cost and better design performance on the test cases compared with a Bayesian yield optimization approach developed recently.