An SDI Approach for Big Data Analytics: The Case on Sensor Web Event Detection and Geoprocessing Workflow

被引:25
作者
Yue, Peng [1 ,2 ,3 ]
Zhang, Chenxiao [1 ]
Zhang, Mingda [1 ]
Zhai, Xi [1 ]
Jiang, Liangcun [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[3] Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Big data; geoprocessing workflow; geospatial services; SensorWeb; social data mining; AEROSOL; INTEROPERABILITY; PATTERNS; TWITTER; HAZE;
D O I
10.1109/JSTARS.2015.2494610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the big data era, scientific and social data could complement each other for enhanced data analysis and scientific discovery. Such capabilities could be achieved by taking an infrastructure-based approach, compared to existing algorithm-based approaches. This paper investigates how scientific and social data could work together in a spatial data infrastructure (SDI) enabled by interoperable services. It takes a human-as-sensor perspective and treats the social data as a special kind of sensor data, which could be mined and used for event detection in the Sensor Web environment. Sensor Web, social data mining, and geoprocessing workflows are combined together for timely decision support from social and sensor data. The result is an SDI approach for big data analytics. A use case on haze-related data mining and analysis illustrates the applicability of the approach.
引用
收藏
页码:4720 / 4728
页数:9
相关论文
共 39 条
[1]   Small Is Beautiful Summarizing Scientific Workflows Using Semantic Annotations [J].
Alper, Pinar ;
Belhajjame, Khalid ;
Goble, Carole ;
Karagoz, Pinar .
2013 IEEE INTERNATIONAL CONGRESS ON BIG DATA, 2013, :318-325
[2]  
[Anonymous], 2011, WORLD 2011 ICT FACTS
[3]  
[Anonymous], 2014, Master thesis, DOI [10.1109/BTAS.2014.6996295, DOI 10.1145/2593069.2593124]
[4]   Scientific geodata infrastructures: challenges, approaches and directions [J].
Bernard, Lars ;
Maes, Stephan ;
Mueller, Matthias ;
Henzen, Christin ;
Brauner, Johannes .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2014, 7 (07) :613-633
[5]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[6]  
Botts M., 2007, 07165 OPENGIS
[7]   New Generation Sensor Web Enablement [J].
Broering, Arne ;
Echterhoff, Johannes ;
Jirka, Simon ;
Simonis, Ingo ;
Everding, Thomas ;
Stasch, Christoph ;
Liang, Steve ;
Lemmens, Rob .
SENSORS, 2011, 11 (03) :2652-2699
[8]   Event Detection using Twitter: A Spatio-Temporal Approach [J].
Cheng, Tao ;
Wicks, Thomas .
PLOS ONE, 2014, 9 (06)
[9]  
Commission of the European Communities,, 2004, 980 SEC COMM EUR COM
[10]   Beyond the geotag: situating 'big data' and leveraging the potential of the geoweb [J].
Crampton, Jeremy W. ;
Graham, Mark ;
Poorthuis, Ate ;
Shelton, Taylor ;
Stephens, Monica ;
Wilson, Matthew W. ;
Zook, Matthew .
CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2013, 40 (02) :130-139