Progress and challenges in mass spectrometry-based analysis of antibody repertoires

被引:24
|
作者
Snapkov, Igor [1 ,2 ]
Chernigovskaya, Maria [1 ,2 ]
Sinitcyn, Pavel [3 ]
Khang Le Quy [1 ,2 ]
Nyman, Tuula A. [1 ,2 ,4 ]
Greiff, Victor [1 ,2 ]
机构
[1] Univ Oslo, Dept Immunol, Oslo, Norway
[2] Oslo Univ Hosp, Oslo, Norway
[3] Max Planck Inst Biochem, Computat Syst Biochem, Martinsried, Germany
[4] Univ Oslo, Prote Core Facil PCF, Oslo, Norway
关键词
MOLECULAR-LEVEL ANALYSIS; TOP-DOWN; PEPTIDE IDENTIFICATION; MONOCLONAL-ANTIBODIES; SERUM IMMUNOGLOBULINS; HUMORAL IMMUNITY; LIGHT-CHAIN; PROTEOMICS; CELL; BINDING;
D O I
10.1016/j.tibtech.2021.08.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
引用
收藏
页码:463 / 481
页数:19
相关论文
共 50 条
  • [31] Mass spectrometry-based proteomics in the life sciences
    C. S. Lane
    Cellular and Molecular Life Sciences CMLS, 2005, 62 : 848 - 869
  • [32] Web Resources for Mass Spectrometry-based Proteomics
    Tao Chen
    Jie Zhao
    Jie Ma
    Yunping Zhu
    Genomics,Proteomics & Bioinformatics, 2015, (01) : 36 - 39
  • [33] Microfluidic chips for mass spectrometry-based proteomics
    Lee, Jeonghoon
    Soper, Steven A.
    Murray, Kermit K.
    JOURNAL OF MASS SPECTROMETRY, 2009, 44 (05): : 579 - 593
  • [34] Mass spectrometry-based studies of virus assembly
    Ashcroft, Alison E.
    CURRENT OPINION IN VIROLOGY, 2019, 36 : 17 - 24
  • [35] Comparative Analysis of Two Helicobacter pylori Strains using Genomics and Mass Spectrometry-Based Proteomics
    Karlsson, Roger
    Thorell, Kaisa
    Hosseini, Shaghayegh
    Kenny, Diarmuid
    Sihlbom, Carina
    Sjoling, Asa
    Karlsson, Anders
    Nookaew, Intawat
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [36] Mass spectrometry-based signal networks elucidation
    He, Kun
    Wang, Na
    Li, Wei-Hua
    Zhang, Xue-Min
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (01) : 120 - 125
  • [37] Data processing for mass spectrometry-based metabolomics
    Katajamaa, Mikko
    Oresic, Matej
    JOURNAL OF CHROMATOGRAPHY A, 2007, 1158 (1-2) : 318 - 328
  • [38] MASS SPECTROMETRY-BASED PROTEOMICS IN REPRODUCTIVE MEDICINE
    Kolialexi, Aggeliki
    Mavrou, Ariadni
    Spyrou, George
    Tsangaris, George Th.
    MASS SPECTROMETRY REVIEWS, 2008, 27 (06) : 624 - 634
  • [39] Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches
    Wilson, Claire H.
    Zhang, Hui Emma
    Gorrell, Mark D.
    Abbott, Catherine A.
    BIOLOGICAL CHEMISTRY, 2016, 397 (09) : 837 - 856
  • [40] Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite
    Deutsch, Eric W.
    Mendoza, Luis
    Shteynberg, David D.
    Hoopmann, Michael R.
    Sun, Zhi
    Eng, Jimmy K.
    Moritz, Robert L.
    JOURNAL OF PROTEOME RESEARCH, 2023, : 615 - 624