Epidermal Growth Factor Receptor ( EGFR) Signaling Regulates Global Metabolic Pathways in EGFR-mutated Lung Adenocarcinoma

被引:167
作者
Makinoshima, Hideki [1 ]
Takita, Masahiro [1 ,2 ]
Matsumoto, Shingo [1 ,3 ]
Yagishita, Atsushi [1 ]
Owada, Satoshi [4 ]
Esumi, Hiroyasu [4 ]
Tsuchihara, Katsuya [1 ,2 ]
机构
[1] Natl Canc Ctr, Div Translat Res, Exploratory Oncol Res & Clin Trial Ctr, Kashiwa, Chiba 2778577, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci, Kashiwa, Chiba 2778561, Japan
[3] Natl Canc Ctr Hosp East, Thorac Oncol Div, Kashiwa, Chiba 2778577, Japan
[4] Tokyo Univ Sci, Res Inst Biomed Sci, Noda, Chiba 2780022, Japan
关键词
POSITRON-EMISSION-TOMOGRAPHY; IONIZATION MASS-SPECTROMETRY; TYROSINE KINASE INHIBITORS; CANCER-CELL METABOLISM; C-MYC; MUTATIONS; GEFITINIB; PROLIFERATION; TRANSLOCATION; TUMORS;
D O I
10.1074/jbc.M114.575464
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic mutations in tumor cells cause several unique metabolic phenotypes that are critical for cancer cell proliferation. Mutations in the tyrosine kinase epidermal growth factor receptor (EGFR) induce oncogenic addiction in lung adenocarcinoma (LAD). However, the linkage between oncogenic mutated EGFR and cancer cell metabolism has not yet been clearly elucidated. Here we show that EGFR signaling plays an important role in aerobic glycolysis in EGFR-mutated LAD cells. EGFR-tyrosine kinase inhibitors (TKIs) decreased lactate production, glucose consumption, and the glucose-induced extracellular acidification rate (ECAR), indicating that EGFR signaling maintained aerobic glycolysis in LAD cells. Metabolomic analysis revealed that metabolites in the glycolysis, pentose phosphate pathway (PPP), pyrimidine biosynthesis, and redox metabolism were significantly decreased after treatment of LAD cells with EGFR-TKI. On a molecular basis, the glucose transport carried out by glucose transporter 3 (GLUT3) was downregulated in TKI-sensitive LAD cells. Moreover, EGFR signaling activated carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), which catalyzes the first step in de novo pyrimidine synthesis. We conclude that EGFR signaling regulates the global metabolic pathway in EGFR-mutated LAD cells. Our data provide evidence that may link therapeutic response to the regulation of metabolism, which is an attractive target for the development of more effective targeted therapies to treat patients with EGFR-mutated LAD.
引用
收藏
页码:20813 / 20823
页数:11
相关论文
共 44 条
[1]   EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Glycolytic Tumors in Brain Cancer [J].
Babic, Ivan ;
Anderson, Erik S. ;
Tanaka, Kazuhiro ;
Guo, Deliang ;
Masui, Kenta ;
Li, Bing ;
Zhu, Shaojun ;
Gu, Yuchao ;
Villa, Genaro R. ;
Akhavan, David ;
Nathanson, David ;
Gini, Beatrice ;
Mareninov, Sergey ;
Li, Rui ;
Camacho, Carolina Espindola ;
Kurdistani, Siavash K. ;
Eskin, Ascia ;
Nelson, Stanley F. ;
Yong, William H. ;
Cavenee, Webster K. ;
Cloughesy, Timothy F. ;
Christofk, Heather R. ;
Black, Douglas L. ;
Mische, Paul S. .
CELL METABOLISM, 2013, 17 (06) :1000-1008
[2]   Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1 [J].
Ben-Sahra, Issam ;
Howell, Jessica J. ;
Asara, John M. ;
Manning, Brendan D. .
SCIENCE, 2013, 339 (6125) :1323-1328
[3]   Regulation of Glucose Transporter Translocation in Health and Diabetes [J].
Bogan, Jonathan S. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 81, 2012, 81 :507-532
[4]   Regulation of cancer cell metabolism [J].
Cairns, Rob A. ;
Harris, Isaac S. ;
Mak, Tak W. .
NATURE REVIEWS CANCER, 2011, 11 (02) :85-95
[5]   Therapeutic targets in cancer cell metabolism and autophagy [J].
Cheong, Heesun ;
Lu, Chao ;
Lindsten, Tullia ;
Thompson, Craig B. .
NATURE BIOTECHNOLOGY, 2012, 30 (07) :671-678
[6]   HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer [J].
David, Charles J. ;
Chen, Mo ;
Assanah, Marcela ;
Canoll, Peter ;
Manley, James L. .
NATURE, 2010, 463 (7279) :364-U114
[7]   Transient PI3K Inhibition Induces Apoptosis and Overcomes HGF-Mediated Resistance to EGFR-TKIs in EGFR Mutant Lung Cancer [J].
Donev, Ivan S. ;
Wang, Wei ;
Yamada, Tadaaki ;
Li, Qi ;
Takeuchi, Shinji ;
Matsumoto, Kunio ;
Yamori, Takao ;
Nishioka, Yasuhiko ;
Sone, Saburo ;
Yano, Seiji .
CLINICAL CANCER RESEARCH, 2011, 17 (08) :2260-2269
[8]   Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J].
Heiden, Matthew G. Vander ;
Cantley, Lewis C. ;
Thompson, Craig B. .
SCIENCE, 2009, 324 (5930) :1029-1033
[9]   Post-translational modifications and the Warburg effect [J].
Hitosugi, T. ;
Chen, J. .
ONCOGENE, 2014, 33 (34) :4279-4285
[10]   Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth [J].
Hitosugi, Taro ;
Kang, Sumin ;
Heiden, Matthew G. Vander ;
Chung, Tae-Wook ;
Elf, Shannon ;
Lythgoe, Katherine ;
Dong, Shaozhong ;
Lonial, Sagar ;
Wang, Xu ;
Chen, Georgia Z. ;
Xie, Jianxin ;
Gu, Ting-Lei ;
Polakiewicz, Roberto D. ;
Roesel, Johannes L. ;
Boggon, Titus J. ;
Khuri, Fadlo R. ;
Gilliland, D. Gary ;
Cantley, Lewis C. ;
Kaufman, Jonathan ;
Chen, Jing .
SCIENCE SIGNALING, 2009, 2 (97) :ra73