Dark three-soliton for a nonlinear Schrodinger equation in inhomogeneous optical fiber

被引:26
作者
Zhao, Jianbo [1 ,2 ]
Luan, Zitong [1 ,2 ]
Zhang, Pei [1 ,2 ]
Dai, Chaoqing [3 ]
Biswas, Anjan [4 ,5 ,6 ]
Liu, Wenjun [1 ,2 ]
Kudryashov, Nikolay A. [6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[4] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[6] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
来源
OPTIK | 2020年 / 220卷 / 220期
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Dark soliton; Optical fiber; Soliton interactions; HIGHER-ORDER; SOLITON TRANSMISSION; PHASE-SHIFT; DISPERSION; VECTOR; TRANSFORMATION;
D O I
10.1016/j.ijleo.2020.165189
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dark solitons are widely studied because of their unique characteristics in inhomogeneous optical fibers. A fourth-order nonlinear Schrodinger equation is studied in this paper. Dark soliton solutions are obtained by the Hirota method. With some suitable functions of the variable coefficients, interactions among dark solitons are presented, and their interaction properties are analyzed. Results have some potentially applications in optical fibers and the design of optical switches.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model
    Abdullaev, FK
    Garnier, J
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [2] Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions
    Ankiewicz, Adrian
    Wang, Yan
    Wabnitz, Stefan
    Akhmediev, Nail
    [J]. PHYSICAL REVIEW E, 2014, 89 (01)
  • [3] Higher-order integrable evolution equation and its soliton solutions
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. PHYSICS LETTERS A, 2014, 378 (04) : 358 - 361
  • [4] SOLITON SWITCH USING BIREFRINGENT OPTICAL FIBERS
    CHEN, CJ
    WAI, PKA
    MENYUK, CR
    [J]. OPTICS LETTERS, 1990, 15 (09) : 477 - 479
  • [5] Soliton solutions and their stabilities of three (2+1)-dimensional PT-symmetric nonlinear Schrodinger equations with higher-order diffraction and nonlinearities
    Chen, Shao-Jiang
    Lin, Jia-Ni
    Wang, Yue-Yue
    [J]. OPTIK, 2019, 194
  • [6] Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrodinger equation
    Chen, Yi-Xiang
    Xu, Fang-Qian
    Hu, Yi-Liang
    [J]. NONLINEAR DYNAMICS, 2019, 95 (03) : 1957 - 1964
  • [7] Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential
    Dai, Chao-Qing
    Zhang, Jie-Fang
    [J]. NONLINEAR DYNAMICS, 2020, 100 (02) : 1621 - 1628
  • [8] Vector multipole and vortex solitons in two-dimensional Kerr media
    Dai, Chao-Qing
    Zhou, Guo-Quan
    Chen, Rui-Pin
    Lai, Xian-Jing
    Zheng, Jun
    [J]. NONLINEAR DYNAMICS, 2017, 88 (04) : 2629 - 2635
  • [9] Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation
    Guan, Xue
    Liu, Wenjun
    Zhou, Qin
    Biswas, Anjan
    [J]. NONLINEAR DYNAMICS, 2019, 98 (02) : 1491 - 1500
  • [10] Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation
    Guan, Xue
    Liu, Wenjun
    Zhou, Qin
    Biswas, Anjan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 366