Metric Hopf-Lax formula with semicontinuous data

被引:21
作者
Dragoni, Federica [1 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
关键词
Hamilton-Jacobi equations; Hopf-Lax formula; Dynamical Programming Principle; Carnot-Caratheodory distances;
D O I
10.3934/dcds.2007.17.713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a metric Hopf-Lax formula looking in particular at the Carnot-Caratheodory case. We generalize many properties of the classical euclidean Hopf-Lax formula and we use it in order to get existence results for Hamilton-Jacobi-Cauchy problems satisfying a suitable Hormander condition.
引用
收藏
页码:713 / 729
页数:17
相关论文
共 22 条
[1]  
Alvarez O, 1999, INDIANA U MATH J, V48, P993
[2]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[3]   DISCONTINUOUS VISCOSITY SOLUTIONS OF 1ST-ORDER HAMILTON-JACOBI EQUATIONS - A GUIDED VISIT [J].
BARLES, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (09) :1123-1134
[4]  
BARRON EN, 1990, COMMUN PART DIFF EQ, V15, P1713
[5]  
Bellaiche A., 1996, SUBRIEMANNIAN GEOMET
[6]  
Bortoletto S, 1993, DIFFER INTEGRAL EQU, V6, P905
[7]  
Cannarsa P., 2004, PROGR NONLINEAR DIFF, V58
[8]  
CUTRI A, IN PRESS ESAIM COCV
[9]  
Davini A, 2005, DIFFER INTEGRAL EQU, V18, P509
[10]  
DOLCETTA IC, HOPF FORMULAS STATE