Quasi-periodic solutions in a nonlinear Schrodinger equation

被引:67
作者
Geng, Jiansheng
Yi, Yingfei [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
Schrodinger equation; Hamiltonian systems; KAM theory; normal form; quasi-periodic solution;
D O I
10.1016/j.jde.2006.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, one-dimensional (1D) nonlinear Schrodinger equation iu(t) - u(xx) + mu + vertical bar u vertical bar(4)u = 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:512 / 542
页数:31
相关论文
共 32 条
[1]  
[Anonymous], 2005, ANN MATH STUD
[2]  
[Anonymous], 1997, AM MATH SOC, DOI DOI 10.1090/trans2/180/18
[3]   On long time stability in Hamiltonian perturbations of non-resonant linear PDEs [J].
Bambusi, D .
NONLINEARITY, 1999, 12 (04) :823-850
[4]   CONSTRUCTION OF PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS IN HIGHER DIMENSION [J].
BOURGAIN, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (04) :629-639
[5]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[6]  
Bourgain J, 1994, IMRN, V11, P475, DOI DOI 10.1155/S1073792894000516
[7]  
Bourgain J., 1999, PARK CITY SERIES, V5
[8]  
BROER H, 1996, LECT NOTES MATH, V1645
[9]  
Broer HW, 1996, PROG NONLIN, V19, P171
[10]   KAM tori for 1D nonlinear wave equations with periodic boundary conditions [J].
Chierchia, L ;
You, JG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (02) :497-525