Complex genetic admixture histories reconstructed with Approximate Bayesian Computation

被引:7
作者
Fortes-Lima, Cesar A. [1 ,2 ]
Laurent, Romain [1 ]
Thouzeau, Valentin [3 ,4 ]
Toupance, Bruno [1 ]
Verdu, Paul [1 ]
机构
[1] Univ Paris, Museum Natl Hist Nat, CNRS, UMR7206 Ecoanthropol, Paris, France
[2] Uppsala Univ, Dept Organismal Biol, Evolutionary Biol Ctr, Subdept Human Evolut, Uppsala, Sweden
[3] PSL Univ, Univ Paris Dauphine, Ctr Rech Math Decis, CNRS,UMR7534, Paris, France
[4] PSL Univ, Lab Sci Cognit & Psycholinguist, Dept Etud Cognit, ENS,EHESS,CNRS, Paris, France
关键词
admixture; Approximate Bayesian Computation; inference; machine‐ learning; population genetics; MODEL CHOICE; POPULATION-STRUCTURE; INFERENCE; EVOLUTION; ASSOCIATION; DIVERSITY; LOCI; TOOL;
D O I
10.1111/1755-0998.13325
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Admixture is a fundamental evolutionary process that has influenced genetic patterns in numerous species. Maximum-likelihood approaches based on allele frequencies and linkage-disequilibrium have been extensively used to infer admixture processes from genome-wide data sets, mostly in human populations. Nevertheless, complex admixture histories, beyond one or two pulses of admixture, remain methodologically challenging to reconstruct. We developed an Approximate Bayesian Computation (ABC) framework to reconstruct highly complex admixture histories from independent genetic markers. We built the software package MetHis to simulate independent SNPs or microsatellites in a two-way admixed population for scenarios with multiple admixture pulses, monotonically decreasing or increasing recurring admixture, or combinations of these scenarios. MetHis allows users to draw model-parameter values from prior distributions set by the user, and, for each simulation, MetHis can calculate numerous summary statistics describing genetic diversity patterns and moments of the distribution of individual admixture fractions. We coupled MetHis with existing machine-learning ABC algorithms and investigated the admixture history of admixed populations. Results showed that random forest ABC scenario-choice could accurately distinguish among most complex admixture scenarios, and errors were mainly found in regions of the parameter space where scenarios were highly nested, and, thus, biologically similar. We focused on African American and Barbadian populations as two study-cases. We found that neural network ABC posterior parameter estimation was accurate and reasonably conservative under complex admixture scenarios. For both admixed populations, we found that monotonically decreasing contributions over time, from Europe and Africa, explained the observed data more accurately than multiple admixture pulses. This approach will allow for reconstructing detailed admixture histories when maximum-likelihood methods are intractable.
引用
收藏
页码:1098 / 1117
页数:20
相关论文
共 63 条
  • [1] Fast model-based estimation of ancestry in unrelated individuals
    Alexander, David H.
    Novembre, John
    Lange, Kenneth
    [J]. GENOME RESEARCH, 2009, 19 (09) : 1655 - 1664
  • [2] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [3] The Great Migration and African-American Genomic Diversity
    Baharian, Soheil
    Barakatt, Maxime
    Gignoux, Christopher R.
    Shringarpure, Suyash
    Errington, Jacob
    Blot, William J.
    Bustamante, Carlos D.
    Kenny, Eimear E.
    Williams, Scott M.
    Aldrich, Melinda C.
    Gravel, Simon
    [J]. PLOS GENETICS, 2016, 12 (05):
  • [4] Beaumont M.A., 2018, HDB APPROXIMATE BAYE, P678
  • [5] Beaumont MA, 2002, GENETICS, V162, P2025
  • [6] Bernstein F., 1931, Comitato Italiano per lo Studio dei Problemi della Populazione, V3, P227
  • [7] Non-linear regression models for Approximate Bayesian Computation
    Blum, Michael G. B.
    Francois, Olivier
    [J]. STATISTICS AND COMPUTING, 2010, 20 (01) : 63 - 73
  • [8] Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach
    Boitard, Simon
    Rodriguez, Willy
    Jay, Flora
    Mona, Stefano
    Austerlitz, Frederic
    [J]. PLOS GENETICS, 2016, 12 (03):
  • [9] HIGH-RESOLUTION OF HUMAN EVOLUTIONARY TREES WITH POLYMORPHIC MICROSATELLITES
    BOWCOCK, AM
    RUIZLINARES, A
    TOMFOHRDE, J
    MINCH, E
    KIDD, JR
    CAVALLISFORZA, LL
    [J]. NATURE, 1994, 368 (6470) : 455 - 457
  • [10] Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts
    Brandenburg, Jean-Tristan
    Mary-Huard, Tristan
    Rigaill, Guillem
    Hearne, Sarah J.
    Corti, Helene
    Joets, Johann
    Vitte, Clementine
    Charcosset, Alain
    Nicolas, Stephane D.
    Tenaillon, Maud I.
    [J]. PLOS GENETICS, 2017, 13 (03):