Development and validation of a prognostic model based on comorbidities to predict COVID-19 severity: a population-based study

被引:52
作者
Gude-Sampedro, Francisco [1 ,2 ]
Fernandez-Merino, Carmen [2 ,3 ]
Ferreiro, Lucia [4 ,5 ]
Lado-Baleato, Oscar [6 ]
Espasandin-Dominguez, Jenifer [1 ]
Hervada, Xurxo [7 ]
Cadarso, Carmen M. [6 ]
Valdes, Luis [4 ,5 ]
机构
[1] Complejo Hosp Univ Santiago de Compostela, Dept Epidemiol, Santiago De Compostela, Spain
[2] Inst Invest Sanitarias Santiago IDIS, Grp Metodos Invest, Santiago De Compostela, Spain
[3] Ctr Saude A Estr, Dept Med Familiar & Comunitaria, Pontevedra, Spain
[4] Complejo Hosp Univ Santiago de Compostela, Serv Neumol, Santiago De Compostela, Spain
[5] Inst Invest Sanitarias Santiago IDIS, Grp Interdisciplinar Invest Neumol, Santiago De Compostela, Spain
[6] Univ Santiago de Compostela, Dept Estadist Anal Matemat & Optimizac, Grp Interdisciplinar Bioestadist & Ciencia Datos, Santiago De Compostela, Spain
[7] Conselleria Sanidade, Subdirecc Informac Saude & Epidemiol, Direcc Xeral Saude Publ, Santiago De Compostela, Spain
关键词
COVID-19; prediction model; severity; hospitalization; admission to ICU; death; CORONAVIRUS DISEASE 2019; CLINICAL CHARACTERISTICS; MANAGEMENT; PNEUMONIA; DIAGNOSIS; CARE;
D O I
10.1093/ije/dyaa209
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: The prognosis of patients with COVID-19 infection is uncertain. We derived and validated a new risk model for predicting progression to disease severity, hospitalization, admission to intensive care unit (ICU) and mortality in patients with COVID-19 infection (Gal-COVID-19 scores). Methods: This is a retrospective cohort study of patients with COVID-19 infection confirmed by reverse transcription polymerase chain reaction (RT-PCR) in Galicia, Spain. Data were extracted from electronic health records of patients, including age, sex and comorbidities according to International Classification of Primary Care codes (ICPC-2). Logistic regression models were used to estimate the probability of disease severity. Calibration and discrimination were evaluated to assess model performance. Results: The incidence of infection was 0.39% (10 454 patients). A total of 2492 patients (23.8%) required hospitalization, 284 (2.7%) were admitted to the ICU and 544 (5.2%) died. The variables included in the models to predict severity included age, gender and chronic comorbidities such as cardiovascular disease, diabetes, obesity, hypertension, chronic obstructive pulmonary disease, asthma, liver disease, chronic kidney disease and haematological cancer. The models demonstrated a fair-good fit for predicting hospitalization {AUC [area under the receiver operating characteristics (ROC) curve] 0.77 [95% confidence interval (CI) 0.76, 0.78]}, admission to ICU [AUC 0.83 (95%CI 0.81, 0.85)] and death [AUC 0.89 (95%CI 0.88, 0.90)]. Conclusions: The Gal-COVID-19 scores provide risk estimates for predicting severity in COVID-19 patients. The ability to predict disease severity may help clinicians prioritize high-risk patients and facilitate the decision making of health authorities.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 31 条
[1]  
Atkins J.L., 2020, Preexisting comorbidities predicting severe Covid-19 in older adults in the Uk biobank community cohort, DOI [2020.2005.2006.20092700, DOI 10.1101/2020.05.06.20092700]
[2]  
Burn E., 2020, NATURAL HIST SYMPTOM, DOI [10.1101/2020.07.13.20152454, DOI 10.1101/2020.07.13.20152454]
[3]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[4]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1111/eci.12376]
[5]   Acute pneumonia and the cardiovascular system [J].
Corrales-Medina, Vicente F. ;
Musher, Daniel M. ;
Shachkina, Svetlana ;
Chirinos, Julio A. .
LANCET, 2013, 381 (9865) :496-505
[6]   Quality of registration of dementia diagnosis in primary care: The situation in Spain in 2002-2011 [J].
del Canto de Hoyos-Alonso, Maria ;
Bonis, Julio ;
Bryant, Veronica ;
Castell Alcala, Maria Victoria ;
Otero Puime, Angel .
ATENCION PRIMARIA, 2016, 48 (01) :33-41
[7]  
Dhama K, 2020, CLIN MICROBIOL REV, V33, DOI [10.1128/CMR.00028-20, 10.1038/s41432-020-0088-4]
[8]   Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study [J].
Docherty, Annemarie B. ;
Harrison, Ewen M. ;
Green, Christopher A. ;
Hardwick, Hayley E. ;
Pius, Riinu ;
Norman, Lisa ;
Holden, Karl A. ;
Read, Jonathan M. ;
Dondelinger, Frank ;
Carson, Gail ;
Merson, Laura ;
Lee, James ;
Plotkin, Daniel ;
Sigfrid, Louise ;
Halpin, Sophie ;
Jackson, Clare ;
Gamble, Carrol ;
Horby, Peter W. ;
Nguyen-Van-Tam, Jonathan S. ;
Ho, Antonia ;
Russell, Clark D. ;
Dunning, Jake ;
Openshaw, Peter Jm ;
Baillie, J. Kenneth ;
Semple, Malcolm G. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[9]   Critically Ill Patients With 2009 Influenza A(H1N1) in Mexico [J].
Dominguez-Cherit, Guillermo ;
Lapinsky, Stephen E. ;
Macias, Alejandro E. ;
Pinto, Ruxandra ;
Espinosa-Perez, Lourdes ;
de la Torre, Alethse ;
Poblano-Morales, Manuel ;
Baltazar-Torres, Jose A. ;
Bautista, Edgar ;
Martinez, Abril ;
Martinez, Marco A. ;
Rivero, Eduardo ;
Valdez, Rafael ;
Ruiz-Palacios, Guillermo ;
Hernandez, Martin ;
Stewart, Thomas E. ;
Fowler, Robert A. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2009, 302 (17) :1880-1887
[10]   Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications [J].
Drucker, Daniel J. .
ENDOCRINE REVIEWS, 2020, 41 (03) :457-469