The Operator Ln on Quasivarieties of Universal Algebras

被引:3
作者
Budkin, A., I [1 ]
机构
[1] Altai State Univ, Barnaul, Russia
关键词
quasivariety; variety; universal algebra; congruence-permutable variety; Levi class;
D O I
10.1134/S0037446619040025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be an arbitrary natural and let M be a class of universal algebras. Denote by L-n(M) the class of algebras G such that, for every n-generated subalgebra A of G, the coset a/R (a is an element of A) modulo the least congruence R including A x A is an algebra in M. We investigate the classes L-n(M). In particular, we prove that if M is a quasivariety then L-n(M) is a quasivariety. The analogous result is obtained for universally axiomatizable classes of algebras. We show also that if M is a congruence-permutable variety of algebras then L-n(M) is a variety. We find a variety P of semigroups such that L-1(P) is not a variety.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 50 条
[41]   Pseudo-free families of computational universal algebras [J].
Anokhin, Mikhail .
JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2021, 15 (01) :197-222
[42]   Note on "Fuzzy universal algebras on L-sets" [J].
Yue, Y. .
IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (02) :175-186
[43]   L-fuzzy congruence classes in universal algebras [J].
Addis, Gezahagne Mulat .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (01) :386-423
[44]   Algebraic and logical geometries of universal algebras (a unified approach) [J].
A. G. Pinus .
Journal of Mathematical Sciences, 2012, 185 (3) :473-483
[45]   Frattini Theory for Classes of Finite Universal Algebras of Malcev Varieties [J].
Guo Wenbin ;
K. P. Shum .
Siberian Mathematical Journal, 2002, 43 :1039-1046
[46]   Galois correspondence between implicit operations and categories of universal algebras [J].
Pinus A.G. .
Journal of Mathematical Sciences, 2013, 195 (6) :851-856
[47]   Frattini theory for classes of finite universal algebras of Mal'cev varieties [J].
Wenbin, G ;
Shum, KP .
SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (06) :1039-1046
[48]   L-FUZZY SEMI-PRIME IDEALS IN UNIVERSAL ALGEBRAS [J].
Alaba, Berhanu Assaye ;
Addis, Gezahagne Mulat .
KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (02) :329-342
[49]   Finitely generated varieties of distributive double p-algebras universal modulo a group [J].
Koubek, V ;
Sichler, J .
ALGEBRA UNIVERSALIS, 2004, 51 (01) :35-79
[50]   Finitely generated varieties of distributive double p-algebras universal modulo a group [J].
V. Koubek ;
J. Sichler .
algebra universalis, 2004, 51 :35-79