The Operator Ln on Quasivarieties of Universal Algebras

被引:3
作者
Budkin, A., I [1 ]
机构
[1] Altai State Univ, Barnaul, Russia
关键词
quasivariety; variety; universal algebra; congruence-permutable variety; Levi class;
D O I
10.1134/S0037446619040025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be an arbitrary natural and let M be a class of universal algebras. Denote by L-n(M) the class of algebras G such that, for every n-generated subalgebra A of G, the coset a/R (a is an element of A) modulo the least congruence R including A x A is an algebra in M. We investigate the classes L-n(M). In particular, we prove that if M is a quasivariety then L-n(M) is a quasivariety. The analogous result is obtained for universally axiomatizable classes of algebras. We show also that if M is a congruence-permutable variety of algebras then L-n(M) is a variety. We find a variety P of semigroups such that L-1(P) is not a variety.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 50 条
[31]   Dominions of universal algebras and projective properties [J].
A. I. Budkin .
Algebra and Logic, 2008, 47 :304-313
[32]   Conditional topology and definable functions on universal algebras [J].
A. G. Pinus .
Siberian Mathematical Journal, 1999, 40 :1105-1111
[33]   Graded polynomial identities as identities of universal algebras [J].
Bahturin, Yuri ;
Yasumura, Felipe .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 :1-14
[34]   Large free sets in powers of universal algebras [J].
Taras Banakh ;
Artur Bartoszewicz ;
Szymon Gła̧b .
Algebra universalis, 2014, 71 :23-29
[35]   Conditional topology and definable functions on universal algebras [J].
Pinus, AG .
SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (06) :1105-1111
[36]   Large free sets in powers of universal algebras [J].
Banakh, Taras ;
Bartoszewicz, Artur ;
Glab, Szymon .
ALGEBRA UNIVERSALIS, 2014, 71 (01) :23-29
[37]   Zariski Closed Algebras in Varieties of Universal Algebra [J].
Alexei Belov-Kanel ;
Antonio Giambruno ;
Louis Halle Rowen ;
Uzi Vishne .
Algebras and Representation Theory, 2014, 17 :1771-1783
[38]   Zariski Closed Algebras in Varieties of Universal Algebra [J].
Belov-Kanel, Alexei ;
Giambruno, Antonio ;
Rowen, Louis Halle ;
Vishne, Uzi .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (06) :1771-1783
[39]   CHARACTERIZATION OF LEFT COEXTENSIVE VARIETIES OF UNIVERSAL ALGEBRAS [J].
Broodryk, David Neal .
THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 :1036-1038
[40]   FUZZY ALGEBRAIC STRUCTURES OF UNIVERSAL-ALGEBRAS [J].
SAMHAN, MA ;
ALTHUKAIR, FA .
ARAB GULF JOURNAL OF SCIENTIFIC RESEARCH, 1992, 10 (03) :1-15