The Operator Ln on Quasivarieties of Universal Algebras

被引:3
作者
Budkin, A., I [1 ]
机构
[1] Altai State Univ, Barnaul, Russia
关键词
quasivariety; variety; universal algebra; congruence-permutable variety; Levi class;
D O I
10.1134/S0037446619040025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be an arbitrary natural and let M be a class of universal algebras. Denote by L-n(M) the class of algebras G such that, for every n-generated subalgebra A of G, the coset a/R (a is an element of A) modulo the least congruence R including A x A is an algebra in M. We investigate the classes L-n(M). In particular, we prove that if M is a quasivariety then L-n(M) is a quasivariety. The analogous result is obtained for universally axiomatizable classes of algebras. We show also that if M is a congruence-permutable variety of algebras then L-n(M) is a variety. We find a variety P of semigroups such that L-1(P) is not a variety.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 50 条
[21]   Proper automorphisms of universal algebras [J].
Pinus, AG .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) :1084-1090
[22]   Definable Functions of Universal Algebras and Definable Equivalence Between Algebras [J].
Pinus, A. G. .
ALGEBRA AND LOGIC, 2014, 53 (02) :166-175
[23]   Definable Functions of Universal Algebras and Definable Equivalence Between Algebras [J].
A. G. Pinus* .
Algebra and Logic, 2014, 53 :166-175
[24]   The varieties of Heisenberg vertex operator algebras [J].
YanJun Chu ;
ZongZhu Lin .
Science China Mathematics, 2017, 60 :379-400
[25]   The varieties of Heisenberg vertex operator algebras [J].
Chu YanJun ;
Lin ZongZhu .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (03) :379-400
[26]   The varieties of Heisenberg vertex operator algebras [J].
CHU Yan Jun ;
LIN Zong Zhu .
ScienceChina(Mathematics), 2017, 60 (03) :379-400
[27]   Topologically free subsets of universal algebras [J].
E. G. Zelenyuk .
Ukrainian Mathematical Journal, 1997, 49 (5) :724-734
[28]   The Hidden Subgroup Problem for Universal Algebras [J].
Moore, Matthew ;
Walenczyk, Taylor .
PROCEEDINGS OF THE 35TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2020), 2020, :756-767
[29]   ON SOME OF LOGICAL CLOSURES ON UNIVERSAL ALGEBRAS [J].
Pinus, Alexandr Georgievich .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 :698-703
[30]   Dominions of universal algebras and projective properties [J].
Budkin, A. I. .
ALGEBRA AND LOGIC, 2008, 47 (05) :304-313