The non-local Fisher-KPP equation: travelling waves and steady states

被引:219
作者
Berestycki, Henri [1 ]
Nadin, Gregoire [2 ]
Perthame, Benoit [3 ,4 ]
Ryzhik, Lenya [5 ]
机构
[1] CAMS, EHESS, F-75006 Paris, France
[2] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
[3] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[4] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[5] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
DIFFUSION EQUATIONS; FRONTS; PROPAGATION;
D O I
10.1088/0951-7715/22/12/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Fisher-KPP equation with a non-local saturation effect defined through an interaction kernel phi(x) and investigate the possible differences with the standard Fisher-KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform (phi) over cap(xi) is positive or if the length sigma of the non-local interaction is short enough, then the only steady states are u equivalent to 0 and u equivalent to 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u(infinity)(x), for all speeds c >= c*. The travelling wave connects to the standard state u(infinity)(x) = 1 under the aforementioned conditions: (phi) over cap(xi) > 0 or sigma is sufficiently small. However, the wave is not monotonic for sigma large.
引用
收藏
页码:2813 / 2844
页数:32
相关论文
共 19 条
[1]   Travelling fronts for the KPP equation with spatio-temporal delay [J].
Ashwin, P ;
Bartuccelli, MV ;
Bridges, TJ ;
Gourley, SA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :103-122
[2]   Quenching and propagation in KPP reaction-diffusion equations with a heat loss [J].
Berestycki, H ;
Hamel, F ;
Kiselev, A ;
Ryzhik, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (01) :57-80
[3]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[4]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[5]   Propagation speed of travelling fronts in non local reaction-diffusion equations [J].
Coville, J ;
Dupaigne, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :797-819
[6]   THRESHOLDS AND TRAVELING WAVES FOR THE GEOGRAPHICAL SPREAD OF INFECTION [J].
DIEKMANN, O .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (02) :109-130
[7]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[8]   Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources [J].
Genieys, S. ;
Volpert, V. ;
Auger, P. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2006, 1 (01) :63-80
[9]  
Gilbarg D., 1983, Elliptic Partial Equations of Second Order, V2nd
[10]   Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays [J].
Gourley, SA .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (7-8) :843-853