Principal eigenvalues and anti-maximum principle for some quasilinear elliptic equations on RN

被引:0
作者
Stavrakakis, NM
de Thélin, F
机构
[1] Natl Tech Univ Athens, Dept Math, GR-15780 Athens, Greece
[2] Univ Toulouse 3, UMR MIP, F-31062 Toulouse, France
关键词
p-Laplacian equation; nonlinear eigenvalues problems; indefinite weight; homogeneous Sobolev spaces; unbounded domain; perturbation; antimaximum principle; non-Newtonian fluids;
D O I
10.1002/(SICI)1522-2616(200004)212:1<155::AID-MANA155>3.3.CO;2-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve some previous existence and nonexistence results for positive principal eigenvalues of the problem -Delta(p)u = lambda g(x)psi(p)(u), x is an element of R-N, lim(\x\-->+infinity) u(x) = 0. Also we discuss existence, nonexistence and antimaximum principle questions concerning the perturbed problem -Delta(p)u = lambda g(x)psi(p)(u) + f(x), x is an element of R-N.
引用
收藏
页码:155 / 171
页数:17
相关论文
共 20 条
[2]  
Allegretto W., 1995, FUNKC EKVACIOJ-SER I, V38, P233
[3]  
ANANE A, 1988, THESIS U LIBRE BRUSE
[4]   SOME BOUNDARY-VALUE-PROBLEMS FOR THE BINGHAM MODEL [J].
ATKINSON, C ;
ELALI, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1992, 41 (03) :339-363
[5]   ON SOME BOUNDARY-VALUE-PROBLEMS FOR THE EQUATION DEL.(F(VERTICAL-BAR-DEL-W-VERTICAL-BAR)DEL-W)=0 [J].
ATKINSON, C ;
CHAMPION, CR .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 448 (1933) :269-279
[6]   EMBEDDING THEOREMS AND QUASILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR UNBOUNDED DOMAINS [J].
BERGER, MS ;
SCHECHTE.M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 172 (NOCT) :261-278
[7]   PRINCIPAL EIGENVALUES FOR PROBLEMS WITH INDEFINITE WEIGHT FUNCTION ON RN [J].
BROWN, KJ ;
COSNER, C ;
FLECKINGER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :147-155
[8]   Global bifurcation results for a semilinear elliptic equation on all of IR(N) [J].
Brown, KJ ;
Stavrakakis, N .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :77-94
[9]   ANTI-MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC OPERATORS [J].
CLEMENT, P ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 34 (02) :218-229
[10]  
CLEMENT P, COMMUNICATION