Existence of solutions for a p(x)-Kirchhoff-type equation

被引:189
作者
Dai, Guowei [1 ,2 ]
Hao, Ruifang [2 ]
机构
[1] NW Normal Univ, Math & Informat Sci Coll, Lanzhou 730070, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational method; p(x)-Kirchhoff-type equation; Nonlocal problems; DIFFERENTIAL INCLUSION PROBLEM; P-KIRCHHOFF-TYPE; VARIABLE EXPONENT; SPACES;
D O I
10.1016/j.jmaa.2009.05.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and multiplicity of solutions to a class of p(x)-Kirchhoff-type problem with Dirichlet boundary data. By means of a direct variational approach and the theory of the variable exponent Sobolev spaces, we establish conditions ensuring the existence and multiplicity of solutions for the problem. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2003, FUTURE TRENDS GEOMET
[2]  
ANTONTSEV S., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat., V52, P19, DOI [10.1007/s11565-006-0002-9, DOI 10.1007/S11565-006-0002-9]
[3]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[4]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[5]  
Cavalcanti MM., 2001, Adv. Differential Equations, V6, P701
[6]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[7]   On an elliptic equation of p-Kirchhoff type via variational methods [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) :263-277
[8]   On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition [J].
Correa, Francisco Julio S. A. ;
Nascimento, Rubia G. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) :598-604
[9]   Infinitely many solutions for a p(x)-Laplacian equation in RN [J].
Dai, Guowei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1133-1139
[10]   Infinitely many solutions for a differential inclusion problem in RN involving the p(x)-Laplacian [J].
Dai, Guowei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1116-1123