Ignition and pusher adiabat

被引:18
作者
Cheng, B. [1 ]
Kwan, T. J. T. [1 ]
Wang, Y. M. [1 ]
Yi, S. A. [1 ]
Batha, S. H. [1 ]
Wysocki, F. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
interfacial instability; inertial confinement fusion; thermonuclear ignition; FUSION-TARGETS; ENERGY GAIN;
D O I
10.1088/1361-6587/aac611
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium-tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.
引用
收藏
页数:10
相关论文
共 47 条
[1]  
Atzeni S., 2004, The Physics of Inertial Fusion: Beamplasma Interaction, Hydrodynamics, Hot Dense Matter
[2]  
Avrorin E. N., 1980, Sov. J. Plasma Phys, V6, P527
[3]   ON THE SCALING OF THE ENERGY GAIN OF ICF TARGETS [J].
BASKO, MM .
NUCLEAR FUSION, 1995, 35 (01) :87-99
[4]  
Basko MM, 1998, NUCL FUSION, V38, P1779, DOI 10.1088/0029-5515/38/12/304
[5]  
Berzak Hopkins L, 2017, B AM PHYS SOC, V62
[6]   Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement [J].
Betti, R. ;
Chang, P. Y. ;
Spears, B. K. ;
Anderson, K. S. ;
Edwards, J. ;
Fatenejad, M. ;
Lindl, J. D. ;
McCrory, R. L. ;
Nora, R. ;
Shvarts, D. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[7]  
Callahan D, 2014, APS DPP INVITED TALK
[8]   THERMONUCLEAR REACTION-RATES .5. [J].
CAUGHLAN, GR ;
FOWLER, WA .
ATOMIC DATA AND NUCLEAR DATA TABLES, 1988, 40 (02) :283-334
[9]   Integrated diagnostic analysis of inertial confinement fusion capsule performance [J].
Cerjan, Charles ;
Springer, Paul T. ;
Sepke, Scott M. .
PHYSICS OF PLASMAS, 2013, 20 (05)
[10]   Effects of preheat and mix on the fuel adiabat of an imploding capsule [J].
Cheng, B. ;
Kwan, T. J. T. ;
Wang, Y. M. ;
Yi, S. A. ;
Batha, S. H. ;
Wysocki, F. J. .
PHYSICS OF PLASMAS, 2016, 23 (12)