Complex dynamics of a Holling type II prey-predator system with state feedback control

被引:140
作者
Jiang, Guirong [1 ]
Lu, Qishao [1 ]
Qian, Linning [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.09.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex dynamics of a Holling type II prey-predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincare map and the analogue of the Poincare criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:448 / 461
页数:14
相关论文
共 21 条
[1]  
Bainov D., 1993, Impulsive differential equations: periodic solutions and applications
[2]   Permanence of population growth models with impulsive effects [J].
Ballinger, G ;
Liu, X .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (12) :59-72
[3]   Stability properties of pulse vaccination strategy in SEIR epidemic model [J].
d'Onofrio, A .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :57-72
[4]  
El-Shahed M, 2005, INT J NONLIN SCI NUM, V6, P163
[5]  
GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
[6]  
Holling C. S., 1965, Mem ent Soc Canada Ottawa, Vno. 45, P1
[7]   Bifurcations in impact systems [J].
Ivanov, AP .
CHAOS SOLITONS & FRACTALS, 1996, 7 (10) :1615-1634
[8]  
Kuznetsov Y. A., 1998, ELEMENTS APPL BIFURC, DOI [10.1007/b98848, DOI 10.1007/978-1-4757-2421-9]
[9]  
Lakmeche A, 2000, DYN CONTIN DISCRET I, V7, P265
[10]   Bifurcations in nonlinear discontinuous systems [J].
Leine, RI ;
van Campen, DH ;
van de Vrande, BL .
NONLINEAR DYNAMICS, 2000, 23 (02) :105-164