Scaling properties of porous media with power-law particle size distributions

被引:10
作者
Ghilardi, P [1 ]
Menduni, G [1 ]
机构
[1] POLITECN MILAN,DEPT HYDRAUL ENVIRONM & SURVEYING ENGN,I-20133 MILAN,ITALY
关键词
D O I
10.1016/S0022-1694(96)03098-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Porous media whose grain sizes are distributed according to the law proposed by Turcotte (1986, J. Geophys. Res., 91(B2): 1921-1926) are investigated in order to check if the void volume is a fractal object. It is shown that a power-law distribution of the particle sizes implies a scaling structure of the voids only within a given range of values of the porosity and of the distribution exponent.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 24 条
  • [1] ADLER PM, 1989, FRACTAL APPROACH HET
  • [2] BADII R, 1985, J STAT PHYS, V40, P725, DOI 10.1007/BF01009897
  • [3] BECHINI C, 1993, HYDRAULIC PROPERTIES
  • [4] Carman PC., 1939, J AGR SCI, P29
  • [5] CARMAN PC, 1938, J SOC CHEM IND, V57
  • [6] CARMAN PC, 1939, J SOC CHEM IND JAN
  • [7] Feder J., 1988, FRACTALS PLENUM
  • [8] SELF-SIMILAR HETEROGENEITY IN GRANULAR POROUS-MEDIA AT THE REPRESENTATIVE ELEMENTARY VOLUME SCALE
    GHILARDI, P
    KAI, AK
    MENDUNI, G
    [J]. WATER RESOURCES RESEARCH, 1993, 29 (04) : 1205 - 1214
  • [9] GENERALIZED DIMENSIONS OF STRANGE ATTRACTORS
    GRASSBERGER, P
    [J]. PHYSICS LETTERS A, 1983, 97 (06) : 227 - 230
  • [10] MEASURING THE STRANGENESS OF STRANGE ATTRACTORS
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICA D, 1983, 9 (1-2): : 189 - 208