A multiplicative property of quantum flag minors II

被引:5
作者
Caldero, P [1 ]
Marsh, BR
机构
[1] Univ Lyon 1, Dept Math, F-69622 Villeurbanne, France
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2004年 / 69卷
关键词
D O I
10.1112/S0024610704005174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U+ be the plus part of the quantized enveloping algebra of a simple Lie algebra of type A(n) and let beta* be the dual canonical basis of U+. Let b, b' be in B*, and suppose that one of the two elements is a q-commuting product of quantum flag minors. It is shown that b and b' are multiplicative if and only if they q-commute.
引用
收藏
页码:608 / 622
页数:15
相关论文
共 22 条
[1]   Tensor product multiplicities, canonical bases and totally positive varieties [J].
Berenstein, A ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2001, 143 (01) :77-128
[2]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[3]   On degenerations and extensions of finite dimensional modules [J].
Bongartz, K .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :245-287
[4]   Adapted algebras for the Berenstein-Zelevinsky conjecture [J].
Caldero, P .
TRANSFORMATION GROUPS, 2003, 8 (01) :37-50
[5]  
CALDERO P, 2003, REPRESENTATION THEOR, V7, P164
[6]   Regions of linearity, lusztig cones, and canonical basis elements for the quantized enveloping algebra of type A4 [J].
Carter, R ;
Marsh, BR .
JOURNAL OF ALGEBRA, 2000, 234 (02) :545-603
[7]  
Joseph A., 1995, ERGEBNISSE MATH IHRE, V29
[8]   THE CRYSTAL BASE AND LITTELMANN REFINED DEMAZURE CHARACTER FORMULA [J].
KASHIWARA, M .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (03) :839-858
[9]   ON CRYSTAL BASES OF THE Q-ANALOG OF UNIVERSAL ENVELOPING-ALGEBRAS [J].
KASHIWARA, M .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (02) :465-516
[10]  
Leclerc B, 2003, PROG MATH, V210, P115